Правильная биомеханика тела. Биомеханика — наука о движениях человека

Правильная биомеханика тела. Биомеханика — наука о движениях человека

Что такое биомеханика?

Название включает в себя греческие слова bios — жизнь и mexane — механизм, рычаг. В отличие от традиционной механики, в которой рассматривается движение и взаимодействие предметов, биомеханика это наука, которая изучает и анализирует многогранные и разносторонние движения живых существ. В фитнесе, да и во всех видах спорта, особенно подвижных, биомеханика рассматривается и используется, как базовая наука и имеет большое значение. Основу биомеханики составляют физиология, геометрия, математика, анатомия и физика в разделе механики. Не меньше биомеханика связана с психологией и биохимией. Все варианты взаимодействия прикладных наук полезны и приносят ощутимую пользу.

Биомеханическая мускульная работа

Работа любой мышцы человеческого опорно-двигательного аппарата основаны на умении и возможности мышцы сокращаться. В момент мышечного сокращения сама мышца укорачивается, а обе точки крепления к костям сближаются одна относительно другой. Подвижная точка Insertion начинает приближаться к начальной неподвижной точке крепления Origin, так осуществляется движение данной конечности.

Если применить это качество и свойство мышечной материи к области фитнеса, то открывается возможность выполнения определенной механической работы (подъем штанги, перемещение конечности с гантелей), прилагая разную степень мышечного усилия. Мышечная сила в данном случае будет определяться площадью сечения мышечных волокон, или говоря простым языком площадью разреза мышцы в поперечнике. Размер мышечного сокращения определен длиной мышечного волокна. Соединения костей и взаимодействие с мышечными группами устроено в форме механического рычага, позволяющего выполнять простейшую работу по поднятию и передвижению предметов.

Механика учит нас, что чем дальше от оси будет приложена сила, тем выше кпд, ибо благодаря большому плечу рычага, работу можно выполнить с меньшими усилиями. Так и в биомеханике — если мышца крепится дальше от опорной точки, тем более выгодно будет использована ее сила. П.Ф. Лесгафт в этом смысле квалифицировал мышцы на сильные, имеющие крепление дальше от опорной точки и быстрые или ловкие, имеющие точку крепления вблизи опоры.

Мышечное движение всегда производится в двух противоположных направлениях. По этой причине для выполнения двигательного процесса вокруг одной опорной точки необходимо наличие двух мышц на противоположных сторонах одна от другой. Направления движения в биомеханике тоже получили свои определения: сгибание и разгибание, приведение и отведение, горизонтальное приведение и горизонтальное отведение, ротация медиальная и ротация латеральная.

Мышца, которая вызывает момент движения при сокращении и принимает на себя основную нагрузку, называется агонистом — Prime mover. Каждое сокращение мышцы-агониста приводит к полному расслаблению противоположной ей мышцы-антагониста. Если мы выполняем сгибание в локте, агонистом будет являться сгибатель локтя — бицепс, а антагонистом в этот момент будет разгибатель локтя — трицепс. После окончания движения обе мышцы будут уравновешивать друг друга, находясь в немного растянутом состоянии. Это явление называется мышечным тонусом. Мышцы, помогающие выполнять движение мышце-агонисту и действующие в одном с ним направлении, но испытывающие меньшую нагрузку и меньшую степень сокращения называются синергистами. Мышцы, обеспечивающие устойчивость и равновесие определенному суставу при выполнении движения, называются фиксаторами. Помимо фиксаторов значительную роль в тренировочном процессе выполняют мышцы стабилизаторы, которые работают в качестве элементов равновесия тела при смещении центра тяжести и увеличении общей силовой нагрузки. Кроме того мышцы стабилизаторы участвуют в повседневной жизни человека в обеспечении равновесного расположения частей тела относительно друг друга вне силовой тренировки.

В любой момент движения, кости образуют механические рычаги, следуя за мышечными командами.

Биомеханика выделяет три вида биомеханических рычагов:

  • рычаг 1 рода, где точки приложения силы расположены с противоположных сторон от оси;
  • рычаг 2 рода, где точки приложения силы располагаются по одну сторону от оси, но на разном от нее расстоянии, поэтому здесь применимы два вида рычага, условно называемые «рычаг силы» и «рычаг скорости».

Рассмотрим виды рычагов более подробно:

Рычаг 1 рода

В биомеханике он называется «рычагом равновесия». Поскольку точка опоры расположена между двумя точками приложения силы, рычаг еще называют «двуплечим». Такой рычаг нам демонстрирует соединения позвоночника и черепной коробки. Если вращающий момент силы, действующей на затылочную часть черепа равен вращающему моменту силы тяжести, действующему на переднюю часть черепа, и они имеют одинаковое плечо рычага, достигается равновесие. Нам удобно, мы не замечаем разнонаправленного действия, и мышцы не напряжены.

В биомеханике он называется «рычагом равновесия». Поскольку точка опоры расположена между двумя точками приложения силы, рычаг еще называют «двуплечим».

В биомеханике он подразделяется на два вида. Название и действие этого рычага зависят от места расположения приложения нагрузки, но у рычагов обоих видов точка приложения силы точка приложения сопротивления находятся по одну сторону от точки опоры, поэтому оба рычага являются «одноплечими». Рычаг силы образуется при условии, что длина плеча приложения силы мышц длиннее плеча приложения силы тяжести (сопротивления). В качестве наглядного примера можно продемонстрировать человеческую стопу. Осью вращения здесь являются головки плюсневых костей, пяточная кость служит точкой приложения силы, а тяжесть тела образует сопротивление в голеностопном суставе. Здесь имеет место выигрыш в силе, за счет боле длинного плеча приложения силы и проигрыш в скорости. Рычаг скорости имеет более короткое плечо приложения мышечной силы, чем плечо силы противодействия (силы тяжести). Примером может служить работа мышц сгибателей в локтевом суставе. Бицепс крепится вблизи точки вращения (локтевой сустав) и с таким коротким плечом необходима дополнительная сила мышце сгибателю. Здесь имеет место выигрыш в скорости и ходе движения, но проигрыш в силе. Можно заключить, что чем ближе от места опоры будет крепиться мышца, тем короче будет плечо рычага, и тем значительнее будет проигрыш в силе.

При соединении двух костных пар образуется биокинетическая пара, характер движения в которой определяется строением костного сочленения (сустава), работой мышц, сухожилий и связок.

Для того чтобы оптимально и правильно принять исходное положения для выполнения упражнений необходимо напрямую руководствоваться знанием законов рычагов первого и второго типов. Если мы изменим положение конечности или туловища, то в свою очередь определенным образом изменится длина плеча рычага конечности или туловища. В любом случае всегда исходное положение выбирается таким образом, чтобы начальный период тренировки сопровождался менее нагрузочными положениями конечностей и корпуса. В дальнейшем, в зависимости от состояния и формы тренирующегося, можно постепенно увеличивать длину плеча рычага, для усиления воздействия на определенную мышечную группу. Увеличение силы противодействия одновременно с удлинением плеча рычага в свою очередь еще больше акцентирует внимание на укрепление силы конкретной мышечной группы или одной мышцы.

Для осуществления технически грамотного движения в момент выполнения упражнения, необходимо и важно знать, в каком направлении работает сустав, соединяющий активную мышечную группу. Здесь нам необходимо опять обратиться к анатомическим плоскостям. Виды и описание осей и плоскостей даны в разделе кинезиологии. Виды и названия суставов вы можете найти в разделе анатомии. Опорно-двигательный аппарат человека представляет собой различные костные сочленения, соединенные друг с другом посредством суставов. Тело человека может свободно перемещаться в шести направлениях: вперед и назад, вправо и влево, вверх и вниз. Определенная классификация суставов позволяет движения в этих направлениях.

Суставы трехосные — это самые подвижные суставы, они свободно обеспечивают движение в трех направлениях. Примером служат: соединения черепа и позвоночника, межпозвонковых дисков, плечевые суставы, лучевой и тазобедренный. Подобные суставы имеют шарообразную форму. Движения в этих суставах происходят в сагиттальной, корональной и трансверсальной плоскостях. В этих суставах тренирующийся имеет возможность выполнять все виды движений: сгибание и разгибание, приведение и отведение, горизонтальное приведение и отведение, медиальную и латеральную ротацию.

Суставы двухосные — обеспечивают движение в двух направлениях, менее подвижны. Они имеют форму эллипса или седла. Движения в этих суставах происходят в сагиттальной и корональной плоскостях. Примером служат суставы пальцев рук, лучезапястный сустав. Здесь возможны сгибание и разгибание, приведение и отведение.

Суставы одноосные — обеспечивают однонаправленное движение. Они имеют форму цилиндров и блоков. Примером служат плече локтевой, лучевой, коленный, голеностопный суставы. Движения возможны в сагиттальной плоскости и это сгибания и разгибания. В лучевом суставе возможна ротация латеральная (супинация) и ротация медиальная (пронация).

Несмотря на то, что многие крупные мышцы рассматриваются в анатомии как единое целое, различные части и отделы больших мышц могут осуществлять неодинаковые движения. В сгибании плеча, например, принимает участие Deltoid Anterior, в отведении плеча Middle Deltoid, а в разгибании Deltoid Posterior. Данные знания являются основой для составления индивидуальной программы тренировок, которую инструктор или тренер готовит для тренирующегося. Это позволяет грамотно осуществить подбор необходимых упражнений для воздействия на конкретную мышцу или мышечную группу.

В зависимости от того, какое исходное положение принимает тренирующийся, выполнение определенного упражнения может усложняться или облегчаться. Поэтому общая эффективность тренировки также зависит от исходного положения в выполнении упражнения. В фитнесе мы применяем следующие исходные положения: положение лежа — самое простое и легкое, положение сидя — менее легкое и положение стоя — с малой площадью опоры и поэтому достаточно сложное для удержания равновесия.

Для сглаживания разбалансировки в положениях тела с неустойчивым равновесием используются упоры. Очень распространенным является упор лежа. Это закрытая кинематическая цепь, поскольку все части тела замкнуты. Устойчивость и равновесие имеют достаточно высокую степень, центр тяжести расположен низко, площадь опоры большая.

Для примера верхней опоры могут послужить висы. Висы тоже считаются достаточно устойчивыми. Тело человека испытывает силу растяжения под тяжестью собственного веса. Руки прямые и соприкасаются с опорой в фиксировано положении. Вис является силовым упражнением уже сам по себе. Подтягивания на перекладине являются сложным силовым упражнением, которое может выполнить только подготовленный спортсмен с сильно развитыми мышцами верхнего пояса и верхних конечностей. В таком положении любая двигательная активность является сложно выполнимой, поэтому можно использовать опору для ног.

Ходьба — повседневная двигательная активность человека. Это попеременное движение ног. Одна нога служит опорой в тот момент, когда другая находится в воздухе и движется вперед. Ноги поочередно сменяют друг друга, меняя последовательно опорную фазу на двигательную.

Бег — быстрые циклические шаги, требующие от опорно-двигательного аппарата достаточно больших энергозатрат, напряжения центральной нервной системы, хорошей физической формы. Измеряется длиной шага, скоростью бега и длительностью временного промежутка.

Приседания — выполняются мышцами нижних конечностей. Площадь опоры достаточно мала, равновесие не обладает достаточной устойчивостью. При опоре руками выполнение приседаний значительно облегчается. Чем приседания глубже, тем они тяжелее. Усложнение упражнений осуществляется за счет темпа и числа приседаний, возможно дополнительное отягощение на плечи.

Прыжки — это поочередные отталкивания тела от площади опоры. Главную работу выполняют мышцы нижних конечностей, мышцы туловища и рук участвуют в движении, обеспечивая вспомогательную функцию.

Что такое биомеханика?

Название включает в себя греческие слова bios — жизнь и mexane — механизм, рычаг. В отличие от традиционной механики, в которой рассматривается движение и взаимодействие предметов, биомеханика это наука, которая изучает и анализирует многогранные и разносторонние движения живых существ. В фитнесе, да и во всех видах спорта, особенно подвижных, биомеханика рассматривается и используется, как базовая наука и имеет большое значение. Основу биомеханики составляют физиология, геометрия, математика, анатомия и физика в разделе механики. Не меньше биомеханика связана с психологией и биохимией. Все варианты взаимодействия прикладных наук полезны и приносят ощутимую пользу.

Биомеханическая мускульная работа

Работа любой мышцы человеческого опорно-двигательного аппарата основаны на умении и возможности мышцы сокращаться. В момент мышечного сокращения сама мышца укорачивается, а обе точки крепления к костям сближаются одна относительно другой. Подвижная точка Insertion начинает приближаться к начальной неподвижной точке крепления Origin, так осуществляется движение данной конечности.

Если применить это качество и свойство мышечной материи к области фитнеса, то открывается возможность выполнения определенной механической работы (подъем штанги, перемещение конечности с гантелей), прилагая разную степень мышечного усилия. Мышечная сила в данном случае будет определяться площадью сечения мышечных волокон, или говоря простым языком площадью разреза мышцы в поперечнике. Размер мышечного сокращения определен длиной мышечного волокна. Соединения костей и взаимодействие с мышечными группами устроено в форме механического рычага, позволяющего выполнять простейшую работу по поднятию и передвижению предметов.

Механика учит нас, что чем дальше от оси будет приложена сила, тем выше кпд, ибо благодаря большому плечу рычага, работу можно выполнить с меньшими усилиями. Так и в биомеханике — если мышца крепится дальше от опорной точки, тем более выгодно будет использована ее сила. П.Ф. Лесгафт в этом смысле квалифицировал мышцы на сильные, имеющие крепление дальше от опорной точки и быстрые или ловкие, имеющие точку крепления вблизи опоры.

Мышечное движение всегда производится в двух противоположных направлениях. По этой причине для выполнения двигательного процесса вокруг одной опорной точки необходимо наличие двух мышц на противоположных сторонах одна от другой. Направления движения в биомеханике тоже получили свои определения: сгибание и разгибание, приведение и отведение, горизонтальное приведение и горизонтальное отведение, ротация медиальная и ротация латеральная.

Мышца, которая вызывает момент движения при сокращении и принимает на себя основную нагрузку, называется агонистом — Prime mover. Каждое сокращение мышцы-агониста приводит к полному расслаблению противоположной ей мышцы-антагониста. Если мы выполняем сгибание в локте, агонистом будет являться сгибатель локтя — бицепс, а антагонистом в этот момент будет разгибатель локтя — трицепс. После окончания движения обе мышцы будут уравновешивать друг друга, находясь в немного растянутом состоянии. Это явление называется мышечным тонусом. Мышцы, помогающие выполнять движение мышце-агонисту и действующие в одном с ним направлении, но испытывающие меньшую нагрузку и меньшую степень сокращения называются синергистами. Мышцы, обеспечивающие устойчивость и равновесие определенному суставу при выполнении движения, называются фиксаторами. Помимо фиксаторов значительную роль в тренировочном процессе выполняют мышцы стабилизаторы, которые работают в качестве элементов равновесия тела при смещении центра тяжести и увеличении общей силовой нагрузки. Кроме того мышцы стабилизаторы участвуют в повседневной жизни человека в обеспечении равновесного расположения частей тела относительно друг друга вне силовой тренировки.

В любой момент движения, кости образуют механические рычаги, следуя за мышечными командами.

Биомеханика выделяет три вида биомеханических рычагов:

  • рычаг 1 рода, где точки приложения силы расположены с противоположных сторон от оси;
  • рычаг 2 рода, где точки приложения силы располагаются по одну сторону от оси, но на разном от нее расстоянии, поэтому здесь применимы два вида рычага, условно называемые «рычаг силы» и «рычаг скорости».

Рассмотрим виды рычагов более подробно:

Рычаг 1 рода

В биомеханике он называется «рычагом равновесия». Поскольку точка опоры расположена между двумя точками приложения силы, рычаг еще называют «двуплечим». Такой рычаг нам демонстрирует соединения позвоночника и черепной коробки. Если вращающий момент силы, действующей на затылочную часть черепа равен вращающему моменту силы тяжести, действующему на переднюю часть черепа, и они имеют одинаковое плечо рычага, достигается равновесие. Нам удобно, мы не замечаем разнонаправленного действия, и мышцы не напряжены.

В биомеханике он называется «рычагом равновесия». Поскольку точка опоры расположена между двумя точками приложения силы, рычаг еще называют «двуплечим».

В биомеханике он подразделяется на два вида. Название и действие этого рычага зависят от места расположения приложения нагрузки, но у рычагов обоих видов точка приложения силы точка приложения сопротивления находятся по одну сторону от точки опоры, поэтому оба рычага являются «одноплечими». Рычаг силы образуется при условии, что длина плеча приложения силы мышц длиннее плеча приложения силы тяжести (сопротивления). В качестве наглядного примера можно продемонстрировать человеческую стопу. Осью вращения здесь являются головки плюсневых костей, пяточная кость служит точкой приложения силы, а тяжесть тела образует сопротивление в голеностопном суставе. Здесь имеет место выигрыш в силе, за счет боле длинного плеча приложения силы и проигрыш в скорости. Рычаг скорости имеет более короткое плечо приложения мышечной силы, чем плечо силы противодействия (силы тяжести). Примером может служить работа мышц сгибателей в локтевом суставе. Бицепс крепится вблизи точки вращения (локтевой сустав) и с таким коротким плечом необходима дополнительная сила мышце сгибателю. Здесь имеет место выигрыш в скорости и ходе движения, но проигрыш в силе. Можно заключить, что чем ближе от места опоры будет крепиться мышца, тем короче будет плечо рычага, и тем значительнее будет проигрыш в силе.

При соединении двух костных пар образуется биокинетическая пара, характер движения в которой определяется строением костного сочленения (сустава), работой мышц, сухожилий и связок.

Для того чтобы оптимально и правильно принять исходное положения для выполнения упражнений необходимо напрямую руководствоваться знанием законов рычагов первого и второго типов. Если мы изменим положение конечности или туловища, то в свою очередь определенным образом изменится длина плеча рычага конечности или туловища. В любом случае всегда исходное положение выбирается таким образом, чтобы начальный период тренировки сопровождался менее нагрузочными положениями конечностей и корпуса. В дальнейшем, в зависимости от состояния и формы тренирующегося, можно постепенно увеличивать длину плеча рычага, для усиления воздействия на определенную мышечную группу. Увеличение силы противодействия одновременно с удлинением плеча рычага в свою очередь еще больше акцентирует внимание на укрепление силы конкретной мышечной группы или одной мышцы.

Для осуществления технически грамотного движения в момент выполнения упражнения, необходимо и важно знать, в каком направлении работает сустав, соединяющий активную мышечную группу. Здесь нам необходимо опять обратиться к анатомическим плоскостям. Виды и описание осей и плоскостей даны в разделе кинезиологии. Виды и названия суставов вы можете найти в разделе анатомии. Опорно-двигательный аппарат человека представляет собой различные костные сочленения, соединенные друг с другом посредством суставов. Тело человека может свободно перемещаться в шести направлениях: вперед и назад, вправо и влево, вверх и вниз. Определенная классификация суставов позволяет движения в этих направлениях.

Суставы трехосные — это самые подвижные суставы, они свободно обеспечивают движение в трех направлениях. Примером служат: соединения черепа и позвоночника, межпозвонковых дисков, плечевые суставы, лучевой и тазобедренный. Подобные суставы имеют шарообразную форму. Движения в этих суставах происходят в сагиттальной, корональной и трансверсальной плоскостях. В этих суставах тренирующийся имеет возможность выполнять все виды движений: сгибание и разгибание, приведение и отведение, горизонтальное приведение и отведение, медиальную и латеральную ротацию.

Суставы двухосные — обеспечивают движение в двух направлениях, менее подвижны. Они имеют форму эллипса или седла. Движения в этих суставах происходят в сагиттальной и корональной плоскостях. Примером служат суставы пальцев рук, лучезапястный сустав. Здесь возможны сгибание и разгибание, приведение и отведение.

Суставы одноосные — обеспечивают однонаправленное движение. Они имеют форму цилиндров и блоков. Примером служат плече локтевой, лучевой, коленный, голеностопный суставы. Движения возможны в сагиттальной плоскости и это сгибания и разгибания. В лучевом суставе возможна ротация латеральная (супинация) и ротация медиальная (пронация).

Несмотря на то, что многие крупные мышцы рассматриваются в анатомии как единое целое, различные части и отделы больших мышц могут осуществлять неодинаковые движения. В сгибании плеча, например, принимает участие Deltoid Anterior, в отведении плеча Middle Deltoid, а в разгибании Deltoid Posterior. Данные знания являются основой для составления индивидуальной программы тренировок, которую инструктор или тренер готовит для тренирующегося. Это позволяет грамотно осуществить подбор необходимых упражнений для воздействия на конкретную мышцу или мышечную группу.

В зависимости от того, какое исходное положение принимает тренирующийся, выполнение определенного упражнения может усложняться или облегчаться. Поэтому общая эффективность тренировки также зависит от исходного положения в выполнении упражнения. В фитнесе мы применяем следующие исходные положения: положение лежа — самое простое и легкое, положение сидя — менее легкое и положение стоя — с малой площадью опоры и поэтому достаточно сложное для удержания равновесия.

Для сглаживания разбалансировки в положениях тела с неустойчивым равновесием используются упоры. Очень распространенным является упор лежа. Это закрытая кинематическая цепь, поскольку все части тела замкнуты. Устойчивость и равновесие имеют достаточно высокую степень, центр тяжести расположен низко, площадь опоры большая.

Для примера верхней опоры могут послужить висы. Висы тоже считаются достаточно устойчивыми. Тело человека испытывает силу растяжения под тяжестью собственного веса. Руки прямые и соприкасаются с опорой в фиксировано положении. Вис является силовым упражнением уже сам по себе. Подтягивания на перекладине являются сложным силовым упражнением, которое может выполнить только подготовленный спортсмен с сильно развитыми мышцами верхнего пояса и верхних конечностей. В таком положении любая двигательная активность является сложно выполнимой, поэтому можно использовать опору для ног.

Ходьба — повседневная двигательная активность человека. Это попеременное движение ног. Одна нога служит опорой в тот момент, когда другая находится в воздухе и движется вперед. Ноги поочередно сменяют друг друга, меняя последовательно опорную фазу на двигательную.

Бег — быстрые циклические шаги, требующие от опорно-двигательного аппарата достаточно больших энергозатрат, напряжения центральной нервной системы, хорошей физической формы. Измеряется длиной шага, скоростью бега и длительностью временного промежутка.

Приседания — выполняются мышцами нижних конечностей. Площадь опоры достаточно мала, равновесие не обладает достаточной устойчивостью. При опоре руками выполнение приседаний значительно облегчается. Чем приседания глубже, тем они тяжелее. Усложнение упражнений осуществляется за счет темпа и числа приседаний, возможно дополнительное отягощение на плечи.

Прыжки — это поочередные отталкивания тела от площади опоры. Главную работу выполняют мышцы нижних конечностей, мышцы туловища и рук участвуют в движении, обеспечивая вспомогательную функцию.

Сестринский персонал, оказывая помощь тяжелобольным, подвергается значительным физическим нагрузкам. Перемещение пациента в постели, подкладывание судна, передвижение носилок, каталок, а иногда и тяжелой аппаратуры может приве­сти в конечном итоге к повреждению позвоночника. Любое быст­рое движение, связанное с перемещением пациента или тяжелого предмета, любое движение, не являющееся физиологическим для позвоночника, увеличивает вероятность его повреждения. Кроме того, постоянные, пусть даже нерезкие «неправильные», нефизиологические движения позвоночника приводят к его травме, которая даст о себе знать со временем.

Мы приводим определение некоторых терминов, которые упоминаются в главе.

Термин

Определение

Механика тела

Способ, которым тело человека при­спосабливается, чтобы не потерять равновесие во время движения

Эффект Вальсальвы (прием, тест, проба)

Натуживание на высоте вдоха внеко­торых случаях может способствовать возникновению тяжелых нарушений ритма сердца и ухудшению коронарно­го кровотока

Постуральный рефлекс

Головокружение, обморок, сердцебие­ние, появляющиеся при изменении по­ложения тела

Правильное положение тела

Положение, при котором спина вы­прямлена и исключены любые искрив­ления, напряжения, давление или чув­ство дискомфорта

Знание биомеханики тела позволит предотвратить травму.

Сидеть, стоять и поднимать тяжести можно с соблюдением определенных правил.

Итак, правильная биомеханика в положении сидя заключает­ся в следующем:

1) колени должны быть чуть выше бедер (это позволит пере­распределить массу тела и уменьшить нагрузку на поясничный отдел позвоночника);

2) спина должна быть прямой, а мышцы живота — напря­женными;

3) плечи должны быть расправлены и расположены симмет­рично бедрам.

Если по роду деятельности сестры ей приходится часто пово­рачиваться в стороны, сидя на стуле, лучше, чтобы этот стул был вертящимся и на колесах. Кроме того, следует правильно подо­брать стул. Для этого сядьте на стул и обопритесь на его спинку. Высота стула и его глубина подобраны правильно, если:

2/3 длины ваших бедер находятся на сиденье;

Стопы без напряжения касаются пола.

Если размер стула не подходит, следует использовать различ­ные приспособления (подушки, подставки для ног), для того чтобы биомеханика тела была правильной.

Правильная биомеханика тела в положении стоя заключается » следующем:

    колени должны быть расслаблены так, чтобы коленные суставы двигались свободно;

    масса тела должна быть распределена равномерно на обе ноги;

    ступни должны быть расставлены на ширину плеч;

    для того чтобы снизить нагрузку на поясничный отдел позвоночника, встаньте прямо и напрягите мышцы живота и яго­диц; голову при этом следует держать прямо, чтобы подбородок находился в горизонтальной плоскости;

    расположите плечи в одной плоскости с бедрами.

Правильная биомеханика при поднятии тяжестей заключается в следующем:

    перед поднятием тяжестей расположите стопы на расстоя­нии 30 см друг от друга, выдвинув одну стопу слегка вперед (этим достигается хорошая опора и уменьшается опасность потеря равновесия и падения);

    встаньте рядом с человеком, которого вам нужно будм. поднимать, так, чтобы вам не нужно было наклоняться вперед*

    прижимайте поднимаемого человека к себе в процессе подъема;

    сгибайте только колени, поднимая человека, сохраняя ту­ловище в вертикальном положении;

    не делайте резких движений.

Используя правильную биомеханику тела, сестра обеспечива­ет себе безопасность, а стало быть, сохраняет свое здоровье.

Сестра, как и весь персонал лечебного учреждения, несет ответственность за безопасность пациента. В процессе ухо­да сестра должна помочь соблюдать и сохранять правильную биомеханику тела, оказывая помощь пациенту, неправильно сидящему в кресле, неудобно лежащему в постели, а также когда он, находясь в положении стоя, подвергается опасности падения.

УЧЕБНИК ДЛЯ ВУЗОВ.

В.И. ДУБРОВСКИЙ, В.Н. ФЕДОРОВА

Москва


Рецензенты:

доктор биологических наук, профессор А.Г. Максина; доктор технических наук, профессор В.Д. Ковалев;

кандидат медицинских наук, лауреат Государственной премии СССР

И.Л. Баднин

Рисунки выполнены художником Н.М. Замешаевой

Дубровский В.И., Федорова В.Н.

Биомеханика: Учеб. для сред, и высш. учеб, заведений. — М.: Изд-во ВЛАДОС-ПРЕСС, 2003. — 672 с.: ил. ISBN 5-305-00101-3.

Учебник написан в соответствии с новой программой изучения биомеханики в высших учебных заведениях. Большое внимание уделено биомеханическому обоснованию применения средств физической культуры и спорта на примере различных видов спорта. Отражены современные подходы к оценке воздействия на технику спортсмена различных физических и климатических факторов, дана биомеханическая характеристика различных видов спорта. Впервые представлены разделы по медицинской биомеханике , биомеханике инвалидов-спортсменов, биомеханическому контролю локомоций и др.

Учебник адресован студентам факультетов физической культуры университетов, институтов физической культуры и медицинских вузов, а также тренерам, спортивным врачам, реабилитологам, занимающимся разработкой и прогнозированием тренировок, лечением и реабилитацией спортсменов и другим специалистам.

© Дубровский В.И., Федорова В.Н., 2003 © «Издательство ВЛАДОС-ПРЕСС», 2003 © Серийное оформление обложки. ISBN 5-305-00101-3 «Издательство ВЛАДОС-ПРЕСС», 2003


ПРЕДИСЛОВИЕ

Любая отрасль человеческих знаний, в том числе такая дисциплина как биомеханика, оперирует некоторым набором исходных определений, понятий и гипотез. С одной стороны, используются фундаментальные определения из математики, физики, общей механики. С другой — биомеханика базируется на данных экспериментальных исследований, важнейшими из которых являются оценка различных видов двигательной деятельности человека, управления ими; определение свойств биомеханических систем при различных способах деформирования; результаты, полученные при решении медико-биологических задач.

Биомеханика находится на стыке разных наук: медицины, физики, математики, физиологии, биофизики, вовлекая в свою сферу различных специалистов, таких как инженеры, конструкторы, технологи, программисты и др.

Биомеханика спорта как учебная дисциплина изучает как движения человека в процессе выполнения физических упражнений, во время соревнований, так и движения отдельных спортивных снарядов.

Существенное значение в современном спорте и физической культуре придается механической прочности, устойчивости тканей опорно-двигательного аппарата, органов, тканей к многократным физическим нагрузкам, особенно при тренировках в экстремальных условиях (среднегорье, высокая влажность, низкая и высокая температура, гипотермия, изменение биоритмов) с учетом телосложения, возраста, пола, функционального состояния человека. Все эти данные могут быть использованы в совершенствовании методики и техники выполнения тех или иных упражнений и тренировочных систем, а также в совершенствовании инвентаря, экипировки и других факторов.

Физическая культура и спорт в нашей стране в последнее десятилетие утратили свое влияние. Это никак не способствует укреплению здоровья человека. Это также сказывается в виде снижения способности противостоять негативным факторам окружающей среды.

Значение спорта во все времена было существенным в предупреждении преждевременного старения, в восстановлении функциональных возможностей организма после болезней и травм.

С развитием науки медицина активно внедряет ее достижения, разрабатывая новые методы лечения, оценки их эффективности, новые методики диагностики. Это, в свою очередь, обогащает спортивную медицину и физическую культуру. В данном учебнике предложены знания физических основ многих вопросов спортивной медицины, которые необходимы преподавателю физкультуры, тренеру, спортивному врачу, массажисту. Эти знания не менее важны, чем знания основ тренировочного процесса. В зависимости от того, как понимается физическая сущность того или иного направления спортивной медицины, в совокупности с медицинскими аспектами можно прогнозировать, дозировать оздоровительный (лечебный) эффект, а также уровень спортивных достижений.

В лечебной физической культуре применяются различные физические упражнения, реализуемые в том или ином виде спорта.

В данном учебнике, по сравнению с ранее вышедшими, впервые для биомеханики спорта изложен материал, показывающий применение законов фундаментальной физики ко многим конкретным направлениям этой дисциплины. Рассмотрены вопросы: кинематика, динамика материальной точки, динамика поступательного движения, виды сил в природе, динамика вращательного движения, неинерциальные системы отсчета, законы сохранения, механические колебания, механические свойства. Представлен большой раздел, показывающий физические основы воздействия различных факторов (механических, звуковых, электромагнитных, радиационных, тепловых), понимание физической сущности которых совершенно необходимо для рационального решения многих задач спортивной медицины.

Профессор В.И. Дубровский и профессор В.Н. Федорова помимо биомеханических методов контроля лиц, занимающихся физкультурой и спортом, представили биомеханические показатели в норме и при патологии (травмы и заболевания опорно-двигательного аппарата, при утомлении и др.), а также при тренировке в экстремальных условиях, у инвалидов-спортсменов и др.

Многие вопросы освещены авторами с учетом развития спорта высших достижений, инвалидного спорта, биомеханики спортивной травмы, различных возрастных периодов развития, с учетом телосложения и техники выполнения тех или иных упражнений в различных видах спорта.

В книге показаны основные направления в развитии биомеханики с использованием современных методов контроля: стационарный и дистанционный контроль за локомоциями; разработка современных технологий инвентаря, экипировки; техники выполнения физических упражнений в различных видах спорта; контроль за выполнением упражнений инвалидами-спортсменами; биомеханический контроль при травмах и заболеваниях опорно-двигательного аппарата и др.

По существу, в каждой главе учебника авторы подчеркивают, что, чтобы успешно выступать на соревнованиях, спортсмен должен владеть рациональной техникой выполнения упражнения, понимая его медико-физическую сущность, должен быть оснащен современной экипировкой, спортинвентарем, должен быть хорошо подготовлен функционально и здоров.

Особое место в учебнике отведено влиянию интенсивных физических нагрузок на структурные (морфологические) изменения в тканях опорно-двигательного аппарата, особенно если несовершенна техника выполнения физических упражнений и методы ее коррекции. Отмечено, что реакция тканей ОДА на физические нагрузки во многом зависит от техники выполнения упражнений, телосложения, возраста, функционального состояния, климато-географических факторов и т. п.

Авторы большое внимание уделяют возможностям использования математических и физических моделей как для различных упражнений, так и для отдельных участков и систем организма человека, в частности, спортсмена, а также тела в целом, для прогнозирования реакций организма на физические нагрузки и различные неблагоприятные факторы воздействия внешней среды. Телосложение, возраст важны для расчетной и модельной оценки пределов переносимости этих воздействий с учетом разнообразных дополнительных факторов.

У нас в стране и за рубежом до сих пор нет учебника, где были бы систематизированы материалы как по теоретическим физико-математическим основам биомеханики спорта, так и по биомеханике в норме и при патологии, с учетом возраста, пола, телосложения и функционального состояния лиц, занимающихся физкультурой и спортом. Особенно это важно при занятии спортом высших достижений, где требования к технике выполнения упражнений исключительные, и малейшие отклонения ведут к травматизму, иногда к инвалидности, снижению спортивных результатов.

Авторы показали, что при современном развитии спорта, особенно спорта высших достижений, биомеханика играет огромную роль для повышения спортивных результатов.

Учебник «Биомеханика» отвечает современным требованиям, предъявляемым к учебникам по медико-биологическим дисциплинам, единым для педагогических, медицинских вузов и институтов физической культуры.

Большое количество информационных таблиц, рисунков, схем, однотипное и четкое разделение материала по структуре в каждой главе, выделенные лаконичные определения делают излагаемый материал очень наглядным, интересным, легко воспринимаемым и запоминаемым.

Этот учебник позволит студентам, тренерам, врачам, методистам ЛФК, преподавателям физкультуры лучше познать основы спортивной биомеханики, спортивной медицины, лечебной физкультуры, а следовательно, успешно и активно использовать их в своей работе. Этот учебник может быть рекомендован знатокам прикладной механики, специализирующимся по биомеханике.

Заведующий кафедрой теоретической механики Пермского государственного технического университета,

доктор технических наук, профессор, заслуженный деятель науки Российской Федерации

Ю.И. Няшин


ВВЕДЕНИЕ

Биомеханика движений человека представляет собой одну из частей более общей дисциплины, кратко называемой «биомеханика».

Биомеханика — это раздел биофизики, в котором изучаются механические свойства тканей, органов и систем живого организма и механические явления, сопровождающие процессы жизнедеятельности. Пользуясь методами теоретической и прикладной механики, эта наука исследует деформацию структурных элементов тела, течение жидкостей и газов в живом организме, движение в пространстве частей тела, устойчивость и управляемость движений и другие вопросы, доступные указанным методам. На основе этих исследований могут быть составлены биомеханические характеристики органов и систем организма, знание которых является важнейшей предпосылкой для изучения процессов регуляции. Учет биомеханических характеристик дает возможность строить предположения о структуре систем, управляющих физиологическими функциями. До последнего времени основные исследования в области биомеханики были связаны с изучением движений человека и животных. Однако сфера приложения этой науки прогрессивно расширяется; сейчас она включает в себя также изучение дыхательной системы, системы кровообращения, специализированных рецепторов и т. д. Интересные данные получены при изучении эластичного и неэластичного сопротивления грудной клетки, движений газов через дыхательные пути. Предпринимаются попытки обобщенного подхода к анализу движения крови с позиций механики сплошных сред, в частности, изучаются упругие колебания сосудистой стенки. Доказано также, что с точки зрения механики структура сосудистой системы оптимальна для выполнения своих транспортных функций. Реологические исследования в биомеханике обнаружили специфические деформационные свойства многих тканей тела: экспоненциальную нелинейность связи между напряжениями и деформациями, существенную зависимость от времени и т. д. Полученные знания о деформационных свойствах тканей помогают решению некоторых практических задач, в частности, они используются при создании внутренних протезов (клапаны, искусственное сердце, сосуды и пр.). Особенно плодотворно применяется классическая механика твердого тела в изучении движений человека. Часто под биомеханикой понимают именно это ее приложение. При изучении движений биомеханика использует данные антропометрии, анатомии, физиологии нервной и мышечной систем и других биологических дисциплин. Поэтому часто, может быть, в учебных целях, в биомеханику ОДА включают его функциональную анатомию, а иногда и физиологию нервно-мышечной системы, называя это объединение кинезиологией.

Количество управляющих воздействий в нервно-мышечной системе огромно. Тем не менее, нервно-мышечная система обладает удивительной надежностью и широкими компенсаторными возможностями, способностью не только многократно повторять одни и те же стандартные комплексы движений (синергии), но и выполнять стандартные произвольные движения, направленные на достижение определенных целей. Помимо способности организовать и активно заучивать необходимые движения, нервно-мышечная система обеспечивает приспособляемость к быстро меняющимся условиям окружающей и внутренней среды организма, изменяя применительно к этим условиям привычные действия. Эта вариативность имеет не только пассивный характер, но обладает чертами активного поиска, осуществляемого нервной системой, когда она добивается наилучшего решения поставленных задач. Перечисленные способности нервной системы обеспечиваются переработкой в ней информации о движениях, которая поступает по обратным связям, образованным сенсорной афферентацией. Деятельность нервно-мышечной системы отражается во временной, кинематической и динамической структурах движения. Благодаря этому отражению становится возможным, наблюдая механику, получить информацию о регуляции движений и ее нарушениях. Такой возможностью широко пользуются при диагностике заболеваний, в нейрофизиологических исследованиях с помощью специальных тестов при контроле двигательных навыков и обученности инвалидов, спортсменов, космонавтов и в ряде других случаев.


Глава 1 ИСТОРИЯ РАЗВИТИЯ БИОМЕХАНИКИ

Биомеханика — одна из самых старых ветвей биологии. Ее истоками были работы Аристотеля и Галена, посвященные анализу движений животных и человека. Но только благодаря работам одного из самых блистательных людей эпохи Возрождения — Леонардо да Винчи (1452—1519) — биомеханика сделала свой следующий шаг. Леонардо особенно интересовался строением человеческого тела (анатомией) в связи с движением. Он описал механику тела при переходе из положения сидя к положению стоя, при ходьбе вверх и вниз, при прыжках и, по-видимому, впервые дал описание походок.

Р. Декарт (1596—1650) создал основу рефлекторной теории, показав, что причиной движений может быть конкретный фактор внешней среды, воздействующий на органы чувств. Этим объяснялось происхождение непроизвольных движений.

В дальнейшем большое влияние на развитие биомеханики оказал итальянец Д. Борелли (1608—1679) — врач, математик, физик. В своей книге «О движении животных» по сути он положил начало биомеханике как отрасли науки. Он рассматривал организм человека как машину и стремился объяснить дыхание, движение крови и работу мышц с позиций механики.

Биологическая механика как наука о механическом движении в биологических системах использует в качестве методического аппарата принципы механики.

Механика человека есть новый раздел механики, изучающий целенаправленные движения человека.

Биомеханика — это раздел биологии, изучающий механические свойства живых тканей, органов и организма в целом, а также происходящие в них механические явления (при движении, дыхании и т. д.).

Леонардо ДО Винчи И.П. Павлов

П.Ф. Лесгафт Н.Е. Введенский

Первые шаги в подробном изучении биомеханики движений были сделаны лишь в конце XIX столетия немецкими учеными Брауном и Фишером (V. Braune, О. Fischer), которые разработали совершенную методику регистрации движений, детально изучили динамическую сторону перемещений конечностей и общего центра тяжести (ОЦТ) человека при нормальной ходьбе.

К.Х. Кекчеев (1923) изучал биомеханику патологических походок, используя методику Брауна и Фишера.

П.Ф. Лесгафтом (1837—1909) создана биомеханика физических упражнений, разработанная на основе динамической анатомии. В 1877 г. П.Ф. Лесгафт начал читать лекции по этому предмету на курсах по физическому воспитанию. В Институте физического образования им. П.Ф. Лесгафта этот курс входил в предмет «физическое образование», а в 1927 г. был выделен в самостоятельный предмет под названием «теория движения» ив 1931 г. переименован в курс «Биомеханика физических упражнений».

Большой вклад в познание взаимодействия уровней регуляции движений внес Н.А. Бернштейн (1880— 1968). Им дано теоретическое обоснование процессов управления движениями с позиций общей теории больших систем. Исследования Н.А. Бернштейна позволили установить чрезвычайно важный принцип управления движениями, общепризнанный в настоящее время. Нейрофизиологические концепции Н.А. Бернштейна послужили основой формирования современной теории биомеханики движений человека.

Идеи Н.М. Сеченова о рефлекторной природе управления движениями путем использования чувствительных сигналов, получили развитие в теории Н.А. Бернштейна о кольцевом характере процессов управления.

B.C. Гурфинкель и др. (1965) клинически подтвердили это направление, выявили принцип синергии в организации работы скелетной мускулатуры при регуляции вертикальной позы, а Ф.А. Северин и др. (1967) получили данные о спинальных генераторах (мотонейронах) локомоторных движений. R. Granit (1955) с позиции нейрофизиологии дал анализ механизмов регуляции движений.

R. Granit (1973) отметил, что организация ответов на выходе в конечном счете определяется механическими свойствами двигательных (моторных) единиц (ДЕ) и специфической иерархией процессов активации — включением медленных или быстрых ДЕ, тонических или фазических мотонейронов, альфа-моторного или альфа-гамма-контроля.

Н.А. Бернштейн А.А. Ухтомский

И.М. Сеченов А.Н. Крестовников

Большой вклад в биомеханику спорта внесли R.G. Osterhoud (1968); Т. Duck (1970), R.M. Brown; J.E. Counsilman (1971); S. Plagenhoef (1971); C.W.Buchan (1971); Dal Monte et.al. (1973); M.Saito et al. (1974) и многие другие.

У нас в стране изучение координации движений человека ведется с двадцатых годов XX столетия. Проводились исследования всей биомеханической картины координационной структуры произвольных движений человека с целью установления общих закономерностей, определяющих как центральную регуляцию, так и деятельность мышечной периферии в этом важнейшем жизненном процессе. С тридцатых годов XX века в институтах физкультуры в Москве (Н.А. Бернштейн), в Ленинграде (Е.А. Котикова, Е.Г. Котельникова), в Тбилиси (Л.В. Чхаидзе), в Харькове (Д.Д. Донской) и других городах стала развиваться научная работа по биомеханике. В 1939 г. вышло учебное пособие Е.А. Котиковой «Биомеханика физических упражнений» и в последующие годы в учебники и учебные пособия стал входить раздел «Биомеханическое обоснование спортивной техники по различным видам спорта».

Из биологических наук в биомеханике более других использовались научные данные по анатомии и физиологии. В последующие годы большое влияние на становление и развитие биомеханики как науки оказали динамическая анатомия, физика и физиология, особенно учение о нервизме И.П. Павлова и о функциональных системах П.К. Анохина.

Большой вклад в изучение физиологии двигательного аппарата внес Н.Е. Введенский (1852—1922). Им выполнены исследования процессов возбуждения и торможения в нервной и мышечной тканях. Его работы о физиологической лабильности живых тканей и возбудимых систем, о парабиозе имеют огромное значение для современной физиологии спорта. Большую ценность представляют также его работы о координации движений.

По определению А.А. Ухтомского (1875—1942), биомеханика исследует «каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение». Им показано, что сила мышц при прочих равных условиях зависит от поперечного сечения. Чем больше поперечное сечение мышцы, тем больше она в состоянии поднять груз. А.А. Ухтомский открыл важнейшее физиологическое явление — доминанту в деятельности нервных центров, в частности, при двигательных актах. Большое место в его работах отведено вопросам физиологии двигательного аппарата.

Вопросы физиологии спорта разрабатывал А.Н. Крестовиков (1885—1955). Они были связаны с выяснением механизма мышечной деятельности, в частности, координации движений, формирования двигательных условных рефлексов, этиологии утомления при физической деятельности и другими физиологическими функциями при выполнении физических упражнений.

М.Ф. Иваницкий (1895—1969) разработал функциональную (динамическую) анатомию применительно к задачам физкультуры и спорта, т. е. определил связь анатомии с физкультурой.

Успехи современной физиологии, и, в первую очередь, труды академика П.К. Анохина дали возможность с позиции функциональных систем по-новому взглянуть на биомеханику движений.

Все это дало возможность обобщить физиологические данные с биомеханическими исследованиями и подойти к решению важных вопросов биомеханики движений в современном спорте, спорте высших достижений.

В середине XX века ученые создали протез руки, управляемый электрическими сигналами, поступающими из нервной системы. В 1957 г. у нас в стране была сконструирована модель руки (кисти), которая выполняла биоэлектрические команды типа «сжать— разжать», а в 1964 г. создан протез с обратной связью, т. е. протез, от которого непрерывно поступает в ЦНС информация о силе сжатия или разжатия кисти, о направлении движения руки и тому подобных признаках.

П.К. Анохин

Американские специалисты (E.W. Schrader и др., 1964) создали протез ноги, ампутированной выше колена. Была изготовлена гидравлическая модель коленного сустава, позволяющая добиться естественной ходьбы. Конструкция предусматривает нормальную высоту подъема пятки и вытягивание ноги при ее отводе независимо от скорости ходьбы.

Бурное развитие спорта в СССР послужило основанием развития биомеханики спорта. С 1958 г. во всех институтах физической культуры биомеханика стала обязательной учебной дисциплиной, создавались кафедры биомеханики, разрабатывались программы, издавались учебные пособия, учебники, проводились научно-методические конференции, готовились специалисты.

Как учебный предмет биомеханика выполняет несколько ролей. Во-первых, с ее помощью студент вводится в круг важнейших физико-математических понятий, которые необходимы для расчетов скорости, углов отталкивания, массы тела, расположения ОЦТ и его роли в технике выполнения спортивных движений. Во-вторых, эта дисциплина имеет самостоятельное применение в спортивной практике, потому что представленная в ней система двигательной деятельности с учетом возраста, пола, массы тела, телосложения позволяет выработать рекомендации для работы тренера, учителя физкультуры, методиста лечебной физкультуры и др.

Биомеханические исследования позволили создать новый тип обуви, спортивного инвентаря, оборудования и техники управления ими (велосипеды, горные и прыжковые лыжи, гоночные лыжи, лодки для гребли и многое другое).

Изучение гидродинамических характеристик рыб и дельфинов дало возможность создать специальные костюмы для пловцов, изменить технику плавания, что способствовало повышению скорости плавания.

Биомеханику преподают в высших физкультурных учебных заведениях во многих странах мира. Создано международное общество биомехаников, проводятся конференции, симпозиумы, конгрессы по биомеханике. При Президиуме Российской академии наук создан научный Совет по проблемам биомеханики с секциями, охватывающими проблемы инженерной, медицинской и спортивной биомеханики.


Глава 2 ТОПОГРАФИЯ ТЕЛА ЧЕЛОВЕКА. ОБЩИЕ ДАННЫЕ О ТЕЛЕ ЧЕЛОВЕКА

Тело человека представляет собой с точки зрения механики объект величайшей сложности. Оно состоит из частей, которые с большой степенью точности можно считать твердыми (скелет) и деформируемых полостей (мышцы, сосуды и пр.), причем в этих полостях содержатся текучие и фильтрующиеся среды, не обладающие свойствами обычных жидкостей.

Тело человека в общих чертах сохраняет строение, свойственное всем позвоночным: двуполярность (головной и хвостовой концы), двустороннюю симметрию, преобладание парных органов, наличие осевого скелета, сохранение некоторых (реликтовых) признаков сегментарности (метамерии) и т. п. (рис. 2.1).

К другим морфофункциональным особенностям тела человека относятся: высокополифункциональная верхняя конечность; ровный ряд зубов; развитый головной мозг; прямохождение; пролонгированное детство и др.

В анатомии принято изучать тело человека в вертикальном положении с сомкнутыми нижними и опущенными верхними конечностями.

В каждой части тела выделяют области (рис. 2.2, а, б) головы, шеи, туловища и двух пар верхних и нижних конечностей (см. рис. 2.1,6).

Рис. 2.1. Сегментарное деление спинного мозга. Формирование сплетений из корешков мозга (а). Сегментарная инвервация органов и функциональных систем (б)

На туловище человека обозначают два конца — черепной, или краниальный и хвостовой, или каудальный и четыре поверхности — брюшную, или вентральную, спинную, или дорсальную и две боковых — правую и левую (рис. 2:3).

На конечностях определяют по отношению к туловищу два конца: проксимальный, т. е. более близкий и дистальный, т. е. отдаленный (см. рис. 2.3).

Оси и плоскости

Тело человека построено по типу двубоковой симметрии (оно делится срединной плоскостью на две симметричные половины) и характеризуется наличием внутреннего скелета. Внутри тела наблюдается расчленение на метамеры, или сегменты, т. е. образования однородные по строению и развитию, расположенные в последовательном порядке, в направлении продольной оси тела (например, мышечные, нервные сегменты, позвонки и пр.); центральная нервная система лежит ближе к спинной поверхности туловища, пищеварительная — к брюшной. Как и все млекопитающие, человек имеет молочные железы и покрытую волосами кожу, полость его тела разделена диафрагмой на грудной и брюшной отделы (рис. 2.4).

Рис. 2.2. Области тела человека:

а — передняя поверхность: 7 — теменная область; 2 — лобная область; 3 — область глазницы; 4 — область рта; 5 — подбородочная область; б — передняя область шеи; 7 — латеральная область шеи; 8 — область ключицы; 9 — ладонь кисти; 10 — передняя область предплечья; 11 — передняя локтевая область; 12 — задняя область плеча; 13 — подмышечная область; 14 — грудная область; 15 — подреберная область; 16— надчревная область; 17— пупочная область; 18— боковая область живота; 19 — паховая область; 20 — лобковая область; 21 — медиальная область бедра; 22 — передняя область бедра; 23 — передняя область колена; 24 — передняя область голени; 25 — задняя область голени; 26 — передняя голеностопная область; 27 —тыл стопы; 28 — пяточная область; 29 — тыл кисти; 30 — предплечье; 31 — задняя область предплечья; 32 — задняя локтевая область; 33 — задняя область плеча; 34 — задняя область предплечья; 35 — область молочной железы; 36 — дельтовидная область; 37 — ключично-грудной треугольник; 38 — подключичная ямка; 39 — грудино-ключично-сосцевидная область; 40 — область носа; 41 — височная область.

Рис. 2.3. Взаимное положение частей в человеческом теле

б — задняя поверхность: 1 — теменная область; 2 — височная область; 3 — лобная область; 4 — область глазницы; 5 — скуловая область; б — щечная область; 7 — поднижнечелюстной треугольник; 8 — грудино-ключично-сосцевидная область; 9—акромиальная область; 10— межлопаточная область; 11 —лопаточная область; 12 — дельтовидная область; 13 — боковая грудная область; 14 — задняя область плеча; 15 — подреберная область; 16 — задняя локтевая область; 17 — задняя область предплечья; 18 — передняя область предплечья; 79 — ладонь кисти; 20 — пяточная область; 21 — подошва стопы; 22 — тыл стопы; 23 — передняя область голени; 24 — задняя область голени; 25 — задняя область колена; 26 — задняя область бедра; 27—заднепроходная область; 28 — ягодичная область; 29 — крестцовая область; 30 — боковая область живота; 31 — поясничная область; 32 — подлопаточная область; 33 — позвоночная область; 34 — задняя область плеча; 35 — задняя локтевая область; 36 — задняя область предплечья; 37 — тыл кисти; 38 — передняя область плеча; 39 — надлопаточная область; 40 — задняя область шеи; 41 — затылочная область

Рис. 2.4. Полости тела

Рис. 2.5. Схема осей и плоскостей в теле человека:

1 — вертикальная (продольная) ось;

2 — фронтальная плоскость; 3 — горизонтальная плоскость; 4 — поперечная ось; 5 — сагиттальная ось; 6 — сагиттальная плоскость

Чтобы лучше ориентироваться относительно взаимного положения частей в человеческом теле, исходят из некоторых основных плоскостей и направлений (рис. 2.5). Термины «верхний», «нижний», «передний», «задний» относятся к вертикальному положению тела человека. Плоскость, делящая тело в вертикальном направлении на две симметричные половины, именуется срединной. Плоскости, параллельные срединной, называются сагиттальными (лат. sagitta — стрела); они делят тело на отрезки, расположенные в направлении справа налево. Перпендикулярно срединной плоскости идут фронтальные, т. е. параллельные лбу (фр. front — лоб) плоскости; они рассекают тело на отрезки, расположенные в направлении спереди назад. Перпендикулярно срединной и фронтальной плоскости проводятся горизонтальные, или поперечные плоскости, разделяющие тело на отрезки, расположенные друг над другом. Сагиттальных (за исключением срединной), фронтальных и горизонтальных плоскостей можно провести произвольное количество, т. е. через любую точку поверхности тела или органа.

Терминами «медиально» и «латерально» пользуются для обозначения частей тела по отношению к срединной плоскости: medialis — находящийся ближе к срединной плоскости, lateralis — дальше от нее. С этими терминами не надо смешивать термины «внутренний» — interims и «наружный» — externus, которые употребляются только по отношению к стенкам полостей. Слова «брюшной» — ventralis, «спинной» — dorsalis, «правый» — dexter, «левый» — sinister, «поверхностный» — superficial, «глубокий» — profundus не нуждаются в объяснении. Для обозначения пространственных отношений на конечностях приняты термины «proximalis» и «distalis», т. е. находящийся ближе и дальше от места соединения конечности с туловищем.

Для определения проекции внутренних органов проводят ряд вертикальных линий: переднюю и заднюю срединные — соответственно сечениям срединной плоскости; правую и левую грудинные— по боковым краям грудины; правую и левую срединноключичные — через середину ключицы; правую и левую окологрудинные — посередине между грудиной и срединноключичной; правую и левую переднеподкрыльцовые — соответственно переднему краю подкрыльцовой ямки; правую и левую срединноподкрыльцовые — исходящие из глубины одноименной ямки; правую и левую заднеподкрыльцовые — соответственно заднему краю подкрыльцовой ямки; правую и левую лопаточные — через нижний угол лопатки; правую и левую околопозвоночные — посередине между лопаточной и задней срединной линиями (соответствует верхушкам поперечных отростков).

Краткие данные о центре тяжести тела человека

Функция нижних конечностей человека, если исключить многие физические упражнения, определяется главным образом опорой (положение стоя) и локомоцией (ходьба, бег). И в том, и в другом случае на функцию нижних конечностей, в отличие от верхних, имеет значительное влияние общий центр тяжести (ОЦТ) тела человека (рис. 2.6).

Рис. 2.6. Расположение общего центра тяжести при различных видах стояния: 1 — при напряженном; 2 — при антропометрическом; 3 — при спокойном

Во многих задачах механики удобно и допустимо рассматривать массу какого-то тела так, как будто она сконцентрирована в одной точке — центре тяжести (ЦТ). Поскольку нам предстоит анализировать силы, действующие на тело человека во время выполнения физических упражнений и стоя (покой), нам следует знать, где находится ЦТ у человека в норме и при патологии (сколиоз, коксартроз, ДЦП, ампутации конечности и др.).

В общей биомеханике важным является изучение расположения центра тяжести (ЦТ) тела, его проекции на площадь опоры, а также пространственного соотношения между вектором ЦТ и различными суставами (рис. 2.7). Это позволяет изучать возможности блокировки суставов, оценить компенсаторные, приспособительные изменения в опорно-двигательном аппарате (ОДА). У взрослых мужчин (в среднем) ОЦТ располагается на 15 мм позади от передне-нижнего края тела V поясничного позвонка. У женщин ЦТ в среднем располагается на 55 мм спереди от передне-нижнего края I крестцового позвонка (рис. 2.8).

Во фронтальной плоскости ОЦТ незначительно (на 2,6 мм у мужчин и на 1,3 мм у женщин) смещен вправо, т. е. правая нога принимает несколько большую нагрузку, чем левая.

Рис. 2.7. Виды положения тела человека стоя: 1 — антропометрическое положение; 2 — спокойное положение; 3 — напряженное положение: Кружок с точкой в центре, находящийся в области таза, показывает положение общего центра тяжести тела; в области головы — положение центра тяжести головы; в области кисти — положение общего центра тяжести кисти. Черные точки показывают поперечные оси суставов верхней и нижней конечностей, а так же атланто-затылочного сустава

Рис. 2.8. Расположение центра

тяжести (ЦТ): а — у мужчин; б — у женщин

Общий центр тяжести (ОЦТ) тела слагается из центров тяжести отдельных частей тела (парциальные центры тяжести) (рис. 2.9). Поэтому при движениях и перемещении массы частей тела перемещается и общий центр тяжести, но для сохранения равновесия его проекция не должна выходить за пределы площади опоры.

Рис. 2.9. Расположение центров тяжести отдельных частей тела

Рис. 2.10. Положение общего центра тяжести тела: а — у мужчин одинакового роста, но различного телосложения; б—у мужчин разного роста; в — у мужчин и женщин

Высота положения ОЦТ у разных людей значительно варьирует в зависимости от целого ряда факторов, к числу которых в первую очередь относятся пол, возраст, телосложение и пр. (рис. 2.10).

У женщин ОЦТ обычно «располагается несколько ниже, чем у мужчин (см. рис. 2.8).

У детей раннего возраста ОЦТ тела расположен выше, чем у взрослых.

При изменении взаимного расположения частей тела, проекция его ОЦТ также меняется (рис. 2.11). Меняется при этом и устойчивость тела. В практике спорта (обучение упражнениям и тренировки) и при выполнении упражнений лечебной гимнастики этот вопрос очень важен, так как при большей устойчивости тела можно выполнять движения с большей амплитудой без нарушения равновесия.

Рис. 2.11. Положение общего центра тяжести при различных положениях тела

Устойчивость тела определяется величиной площади опоры, высотой расположения ОЦТ тела и местом прохождения вертикали, опущенной из ОЦТ, внутри площади опоры (см. рис. 2.7). Чем больше площадь опоры и чем ниже расположен ОЦТ тела, тем больше устойчивость тела.

Количественным выражением степени устойчивости тела в том или ином положении является угол устойчивости (УУ). УУ называется угол, образованный вертикалью, опущенной из ОЦТ тела и прямой, проведенной из ОЦТ тела к краю площади опоры (рис. 2.12). Чем больше угол устойчивости, тем больше степень устойчивости тела.

Рис. 2.12. Углы устойчивости при Рис. 2.13. Плечи силы тяжести по

выполнении упражнения «шпагат»: отношению к поперечным осям

а — угол устойчивости назад; вращения в тазобедренном, коленном

р — угол устойчивости вперед; и голеностопном суставах опорной

Р — сила тяжести ноги конькобежца

(по М.Ф. Иваницкому)

Вертикаль, опущенная из ОЦТ тела, проходит на некотором расстоянии от осей вращения суставов. В связи с этим сила тяжести в любом положении тела имеет по отношению к каждому суставу определенный момент вращения, равный произведению величины силы тяжести на ее плечо. Плечом силы тяжести является перпендикуляр, проведенный из центра сустава к вертикали, опущенной из ОЦТ тела (рис. 2.13). Чем больше плечо силы тяжести, тем больший момент вращения она имеет по отношению к суставу.

Масса частей тела определяется различными способами. Если у разных людей абсолютная масса частей тела будет значительно различаться, то относительная масса, выраженная в процентах, достаточно постоянна (см. табл. 5.1).

Очень большое значение имеют данные о массе частей тела, а также о расположении парциальных центров тяжести и моментов инерции в медицине (для конструирования протезов, ортопедической обуви и т. п.) и в спорте (для конструирования спортивного инвентаря, обуви и т. п.).

Организм, орган, система органов, ткани

Организмом называется всякое живое существо, основными свойствами которого являются: постоянный обмен веществ и энергии (внутри себя и с окружающей средой); самообновление; движение; раздражаемость и реактивность; саморегулирование; рост и развитие; наследственность и изменчивость; приспособляемость к условиям существования. Чем сложнее устроен организм, тем в большей мере он сохраняет постоянство внутренней среды — гомеостаз (температура тела, биохимический состав крови и др.) независимо от меняющихся условий внешней среды.

Эволюция происходила под знаком двух противоположных тенденций: дифференциации, или разделения тела на ткани, органы, системы (с соответствующим и одновременным разделением и специализацией функций), и интеграции, или объединения частей в целостный организм.

Органом называют более или менее обособленную часть организма (печень, почка, глаз и т. д.), выполняющую одну или несколько функций. В образовании органа принимают участие различные по строению и физиологической роли ткани, возникшие в течение длительной эволюции как совокупность приспособительных механизмов. Одни органы (печень, поджелудочная железа и др.) имеют сложное строение, причем каждый их компонент выполняет свою функцию. В других случаях составляющие тот или иной орган (сердце, щитовидная железа, почка, матка и др.) клеточные структуры подчинены выполнению единой сложной функции (кровообращение, мочеотделение и др.).

В живых системах изучает наука под названием биомеханика тела. Она исследует сложные целостные системы, к которым относится человек. Каждое движение человека подчиняется всемирным законам физики. Но биомеханика является более сложной наукой, чем механика, изучающая неживые тела. Ведь контроль над телодвижениями осуществляется совместной работой таких частей и органов человека, как скелет, мышцы, вестибулярный аппарат, а также нервная система.

Биомеханика и медицина

Биомеханика тела в медицине занимается изучением таких важных систем, как костно-мышечная, нервная, а также вестибулярный аппарат. Они поддерживают равновесие человека, обеспечивают наиболее физиологичное положение тела в разных состояниях, таких как покой, ходьба, подъем тяжести, наклон, сидячее, стоячее, лежачее положение. Более того, данная наука изучает координацию усилий человека во время выполнения обыденных жизненных функций. Хорошая биомеханика тела на практике означает верную позицию человеческого тела на протяжении всего дня. Важно постоянно помнить о правильной биомеханике, а не только во время возникновений каких-либо болевых ощущений, тогда проблемы со здоровьем значительно сократятся.

Связь между биомеханикой и эргономикой

Зачем медработнику нужны знания биомеханики тела?

Во всех лечебных учреждениях сотрудники время от времени ухаживают за тяжелобольными пациентами. Эта работа зачастую приводит к тому, что на организм воздействуют некоторые отрицательные факторы. В основном на медработников влияют тяжелые физические нагрузки, которые связаны с транспортировкой пациентов. Если больного сотрудник лечебницы обращается с ним не соответственно правилам, то это может привести к травмам позвоночника или к появлению болей в спине. Правильная биомеханика тела медицинской сестры позволит предотвратить возникновение различных проблем с позвоночником как у самой медсестры, так и у пациента. Чтобы обеспечить оптимальное положение тела, необходимо соблюдать определенные правила. Перед тем как начать перемещение больного, надо определить некоторые важные факторы. Медсестра обязана знать:

  • зачем надо переместить пациента;
  • в каком состоянии здоровья он находится в данный момент;
  • есть ли вспомогательные механические средства для перемещения;
  • если в транспортировке больного принимают участие несколько человек, то необходимо определить среди них руководителя, который будет давать команды.

Что важно помнить перед началом перемещения пациента?

В первую очередь больной должен находиться в безопасном и удобном положении. Персоналу лечебного учреждения необходимо занять положение, в котором будет соблюдаться равновесие в отношении веса пациента и направления его передвижения. Использование собственной массы тела поможет снять напряжение. Перед началом поднятия работники должны убедиться, что их ноги находятся в устойчивом положении. Далее нужно подойти к больному как можно ближе, держа спину прямо. Все сотрудники должны выполнять движения в одинаковом ритме. Кроме того, важно определить, кто именно из задействованного персонала будет исполнять наиболее трудную работу, а именно — удерживать бедра и туловище пациента. Если поднятие больного осуществляется без вспомогательных средств, то все сотрудники должны крепко взяться за руки. При этом лучше держаться за запястье коллеги, чем за его пальцы, тогда руки не расцепятся, даже если будут влажными.

Как нужно поднимать тяжести?

Биомеханика в сидячем положении

Чтобы равномерно распределить массу тела, а также уменьшить нагрузку на поясницу, необходимо знать правила биомеханики в положении сидя. Колени должны находиться немного выше уровня бедер. Спину необходимо выпрямить, а мышцы живота — напрячь. При этом плечи нужно расправить и расположить симметрично бедрам. Если необходимо повернуться, то надо задействовать весь корпус, а не только грудь и плечи. Медицинской сестре в виду своей деятельности зачастую приходится сидеть и разворачиваться на стуле. Поэтому в первую очередь необходимо правильно выбрать рабочее кресло. Для этого нужно прислониться к спинке стула. Две трети длины бедер человека должны быть расположены на сиденье. Если высота и глубина рабочего места подобраны неправильно, то человек будет испытывать напряжение при касании пола стопами. В случае если стул не подходит работнику, необходимо его заменить или же пользоваться разнообразными приспособлениями, такими как подушки или подставки для ног.

Биомеханика в положении стоя

Три вида положения пациента

Пациент обездвижен — что делать?

Если больной находится в обездвиженном состоянии, то крайне важную роль для него играет биомеханика. Положение тела больного должно постоянно контролироваться персоналом. Медсестра обязана знать, что пациент не способен самостоятельно поменять позу и требует помощи со стороны персонала. Люди, у которых болезнь принимает столь тяжелую форму, рискуют получить нарушения в работе многих органов, систем, опорно-двигательных функций. Возможно появление пролежней (язвенных изменений кожи), (длительных ограничений в движении), а также гипотрофии мышц (истончения мышечных волокон). Размещая пациента, медсестра должна придавать ему функциональные позиции, которые способствуют физиологичному расположению всего тела, уменьшают риск появления потенциальных осложнений, связанных с длительной обездвиженностью. Применяя основные правила биомеханики, медсестра поможет больному избежать различных травм позвоночника или развития дополнительных заболеваний.

Поэтапное перемещение лежачего пациента

Важность биомеханики

Чтобы сохранить тело в вертикальном положении, надо не терять равновесие. Это поможет избежать таких факторов риска, как падение, травма или чрезмерная нагрузка на позвоночник. Для сохранения устойчивого положения тела необходимо определить соотношение двух вещей: центра тяжести человека и площади опоры. В разных положениях центр тяжести соответственно меняется. Знание такого предмета, как биомеханика тела человека, поможет эффективно удовлетворить потребность в движении, избегая падений и травм.

Добавить комментарий