Электрическая дуга, несчастный случай

Электрическая дуга, несчастный случай

При коммутации электрических приборов или перенапряжений в цепи между токоведущими частями может появится электрическая дуга. Она может использоваться в полезных технологических целях и в то же время нести вред оборудованию. В настоящее время инженеры разработали ряд методов борьбы и использования в полезных целях электрической дуги. В этой статье мы рассмотрим, как она возникает, ее последствия и область применения.

Образование дуги, её строение и свойства

Представим, что мы в лаборатории проводим эксперимент. У нас есть два проводника, например, металлических гвоздя. Расположим их острием друг к другу на небольшом расстоянии и подключим к гвоздям выводы регулируемого источника напряжения. Если постепенно увеличивать напряжение источника питания, то при определенном его значении мы увидим искры, после чего образуется устойчивое свечение подобное молнии.

Таким образом можно наблюдать процесс её образования. Свечение, которое образуется между электродами — это плазма. Фактически это и есть электрическая дуга или протекание электрического тока через газовую среду между электродами. На рисунке ниже вы видите её строение и вольт-амперную характеристику:

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случай

А здесь – приблизительные величины температур:

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случай

Почему возникает электрическая дуга

Всё очень просто, мы рассматривали в статье об , а также в статье о , что если любое проводящее тело (стальной гвоздь, например) внести в электрическое поле — на его поверхности начнут скапливаться заряды. При том, чем меньше радиус изгиба поверхности, тем их больше скапливается. Говоря простым языком — заряды скапливаются на острие гвоздя.

Между нашими электродами воздух — это газ. Под действием электрического поля происходит его ионизация. В результате всего этого возникают условия для образования электрической дуги.

Напряжение, при котором возникает дуга, зависит от конкретной среды и её состояния: давления, температуры и прочих факторов.

Интересно: по одной из версий это явление так называется из-за её формы. Дело в том, что в процессе горения разряда воздух или другой окружающий её газ разогревается и поднимается вверх, в результате чего происходит искажение прямолинейной формы и мы видим дугу или арку.

Для зажигания дуги нужно либо преодолеть напряжение пробоя среды между электродами, либо разорвать электрическую цепь. Если в цепи есть большая индуктивность, то, согласно законам коммутации, ток в ней не может прерваться мгновенно, он будет протекать и далее. В связи с этим будет возрастать напряжение между разъединенными контактами, а дуга будет гореть пока не исчезнет напряжение и не рассеется энергия, накопленная в магнитном поле катушки индуктивности.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайДля зажигания дуги нужно либо преодолеть напряжение пробоя среды между электродами, либо разорвать электрическую цепь. Если в цепи есть большая индуктивность, то, согласно законам коммутации, ток в ней не может прерваться мгновенно, он будет протекать и далее.

Рассмотрим условия зажигания и горения:

Между электродами должен быть воздух или другой газ. Для преодоления напряжения пробоя среды потребуется высокое напряжение в десятки тысяч вольт – это зависит от расстояния между электродами и других факторов. Для поддержания горения дуги достаточно 50-60 Вольт и тока в 10 и больше Ампер. Конкретные величины зависят от окружающей среды, формы электродов и расстояния между ними.

Вред и борьба с ней

Мы рассмотрели причины возникновения электрической дуги, теперь давайте разберемся какой вред она наносит и способы её гашения. Электрическая дуга наносит вред коммутационной аппаратуре. Вы замечали, что, если включить мощный электроприбор в сеть и через какое-то время выдернуть вилку из розетки — происходит небольшая вспышка. Это дуга образуется между контактами вилки и розетки в результате разрыва электрической цепи.

Важно! Во время горения электрической дуги выделяется много тепла, температура её горения достигает значений более 3000 градусов Цельсия. В высоковольтных цепях длина дуги достигает метра и более. Возникает опасность как нанесения вреда здоровью людей, так и состоянию оборудования.

Тоже самое происходит и в выключателях освещения, другой коммутационной аппаратуре среди которых:

  • автоматические выключатели;
  • магнитные пускатели;
  • контакторы и прочее.

В аппаратах, которые используются в сетях 0,4 кВ, в том числе и привычные 220 В, используют специальные средства защиты – дугогасительные камеры. Они нужны чтобы уменьшить вред, наносимый контактам.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайВ аппаратах, которые используются в сетях 0,4 кВ, в том числе и привычные 220 В, используют специальные средства защиты – дугогасительные камеры.

В общем виде дугогасительная камера представляет собой набор проводящих перегородок особой конфигурации и формы, скрепленных стенками из диэлектрического материала.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случай

При размыкании контактов образовавшаяся плазма изгибается в сторону камеры дугогашения, где разъединяется на небольшие участки. В результате она охлаждается и гасится.

В высоковольтных сетях используют масляные, вакуумные, газовые выключатели. В масляном выключателе гашение происходит коммутацией контактов в масляной ванне. При горении электрической дуги в масле оно разлагается на водород и газы. Вокруг контактов образуется газовый пузырь, который стремиться вырваться из камеры с большой скоростью и дуга охлаждается, так как водород обладает хорошей теплопроводностью.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случай

В вакуумных выключателях не ионизируются газы и нет условий для горения дуги. Также есть выключатели, заполненные газом под высоким давлением. При образовании электрической дуги температура в них не повышается, повышается давление, а из-за этого уменьшается ионизация газов или происходит деионизация. Перспективным направлением считаются .

Также возможна коммутация при нулевом значении переменного тока.

Полезное применение

Рассмотренное явление нашло и целый ряд полезных применений, например:

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случай

Теперь вы знаете, что такое электрическая дуга, какие причины возникновения данного явления и возможные сферы применения. Надеемся, предоставленная информация была для вас понятной и полезной!

Материалы

Электрическая дуга.

Отключение цепи контактным аппаратом характеризуется возникновением плазмы, которая проходит разные стадии газового разряда в процессе преобразования межконтактного промежутка из проводника электрического тока в изолятор.

При токах выше 0,5-1 А возникает стадия дугового разряда (область 1 )(рис. 1.); при снижении тока возникает стадия тлеющего разряда у катода (область 2 ); следующая стадия (область 3 ) – таунсендовский разряд, и наконец, область 4 – стадия изоляции, в которой носители электричества – электроны и ионы – не образуются за счет ионизации, а могут поступать только из окружающей среды.

Рис. 1. Вольтамперная характеристика стадий электрического разряда в газах

Первый участок кривой – дуговой разряд (область 1) – характе­ризуется малым падением напряжения у электродов и большой плотностью тока. С ростом тока напряжение на дуговом промежутке сначала резко падает, а затем изменяется незначительно.

Второй участок (область 2 ) кривой, представляющий собой область тлеющего разряда, характеризуется высоким падением напряжения у катода (250 – 300 В) и малыми токами. С ростом тока возрастет падение напряжения на разрядном промежутке.

Таунсендовский разряд (область 3 ) характеризуется чрезвычайно малыми значениями тока при высоких напряжениях.

Электрическая дуга сопровождается высокой температурой и связана с этой температурой. Поэтому дуга – явление не только электрическое, но и тепловое.

В обычных условиях воздух является хорошим изолятором. Так, для пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: отрицатель­ных – в основном свободных электронов, и положительных – ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов с обра­зованием свободных электронов и ионов называется ионизацией.

Ионизация газа может происходить под действием света, рентгеновских лучей, высокой температуры, под влиянием электрического поля и ряда дру­гих факторов. Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, – термоэлектрон­ная и автоэлектронная эмиссии, а из процессов, происходящих в дуговом промежутке, – термическая ионизация и ионизация толчком.

В коммутационных электрических аппаратах, предна­значенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250 – 300 В. Такой разряд встречается либо на контактах ма­ломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

Основные свойства дугового разряда.

1) Дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов со­ставляет примерно 0,5 А;

2) Температура центральной части дуги очень вели­ка и в аппаратах может достигать 6000 – 18000 К;

3) Плотность тока на катоде чрезвычайно велика и достигает 10 2 – 10 3 А/мм 2 ;

4) Падение напряжения у катода составляет всего 10 – 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характер­ные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рис. 2.).

В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимо­сти от условий, которые там существуют. Поскольку ре­зультирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обес­печивающие возникновение необходимого количества за­рядов.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайВ каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимо­сти от условий, которые там существуют. Поскольку ре­зультирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обес­печивающие возникновение необходимого количества за­рядов.

Рис. 2. Распределение напряжения и напряжённости электрического поля в стационарной дуге постоянного тока

Термоэлектронная эмиссия. Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так назы­ваемое катодное пятно (раскаленная площадка), которое служит основа­нием дуги и очагом излучения элект­ронов в первый момент расхождения контактов. Плотность тока термо­электронной эмиссии зависит от тем­пературы и материала электрода. Она невелика и может быть достаточной для возникновения электрической ду­ги, но она недостаточна для ее го­рения.

Автоэлектронная эмиссия. Это –явление испускания электронов из катода под воздействием сильного электрического поля.

Место разрыва электрической цепи может быть представлено как конденсатор переменной емкости. Емкость в начальный момент равна бесконеч­ности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контактах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

Ионизация толчком. Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации .

Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).

Термическая ионизация. Это – процесс ионизации под воздействием высокой температуры. Поддержание дуги после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объяс­няется основным и практически единственным видом ионизации – термической ионизацией.

Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит иони­зация газа. Основной характеристикой термической ионизации является сте­пень ионизации , представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации .

Деионизация происходит главным образом за счет рекомбинации и диф­фузии .

Рекомбинация. Процесс, при котором различно заряженные частицы, при­ходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

Диффузия. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения U Д и напряжённости электрического поля (продольного градиента напряжения) Е Д = dU/dx вдоль дуги приведена на рисунке (рис. 2). Под градиентом напряжения Е Д по­нимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход харак­теристик U Д и Е Д в приэлектродных областях резко отличается от хода характе­ристик на остальной части дуги. У электродов, в прикатодной и прианодной об­ластях, на промежутке дли­ны порядка 10 – 4 см имеет место резкое падение напря­жения, называемое катод­ным U к и анодным U а. Значение этого падения на­пряжения зависит от мате­риала электродов и окружа­ющего газа. Суммарное зна­чение прианодного и прикатодного падений напряжений составляет 15 – 30 В, градиент напряжения достигает 10 5 – 10 6 В/см.

В остальной части дуги, называемой столбом дуги, падение напряжения U Д практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 – 200 В/см.

Околоэлектродное падение напряжения U Э не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

U Д = U Э + Е Д l Д,

где: Е Д – напряжённость электрического поля в столбе дуги;

l Д – длина дуги; U Э = U к + U а.

В заключение следует ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация – разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем – возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электри­ческим полем, а при таунсендовском разряде ударная ионизация пре­обладает на всём промежутке газового разряда.

Статическая вольтамперная характеристика электрической

дуги постоянного тока.

Важнейшей характеристикой дуги является зависимость напряжения на ней от величины тока. Эта характерис­тика называется вольтамперной. С ростом тока i уве­личивается температура дуги, усиливается термическая ионизация, возрастает число ионизированных частиц в разряде и падает электрическое сопротивление дуги r д.

Напряжение на дуге равно ir д.При увеличении тока сопротивление дуги уменьшается так резко, что напря­жение на дуге падает, несмотря на то, что ток в це­пи возрастает. Каждому значению тока в установившем­ся режиме соответствует свой динамический баланс числа заряженных частиц.

При переходе от одного значения тока к другому тепловое состояние дуги не изменяется мгновенно. Дуго­вой промежуток обладает тепловой инерцией . Если ток изменяется во времени медленно, то тепловая инерция разряда не сказывается. Каждому значению тока со­ответствует однозначное значение сопротивления дуги или напряжения на ней.

Зависимость напряжения на дуге от тока при мед­ленном его изменении называется статической вольтамперной характеристикой дуги.

Статическая характеристика дуги зависит от рас­стояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.

Статические вольтамперные характеристи­ки дуги имеют вид кривых, изображенных на рис. 3.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайСтатическая характеристика дуги зависит от рас­стояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.

Рис. 3. Статические вольтамперные характеристики дуги

Чем больше длина дуги, тем выше лежит ее статическая вольтамперная характеристика. С ростом давления среды, в которой горит дуга, также увеличивается на­пряженность Е Д и поднимается вольтамперная характеристика аналогично рис. 3.

Охлаждение дуги существенно влияет на эту ха­рактеристику. Чем интенсивнее охлаждение дуги, тем больше от нее отводится мощность. При этом должна возрасти мощность, выделяемая дугой. При заданном токе это возможно за счет увеличения напряжения на дуге. Таким образом, с ростом охлаждения вольтампер­ная характеристика располагается выше. Этим широко поль­зуются в дугогасительных устройствах аппаратов.

Динамическая вольтамперная характеристика электрической

дуги постоянного тока.

Если ток в цепи изменяется медленно, то току i 1 со­ответствует сопротивление дуги r Д1 ,абольшему току i 2 соответствует меньшее сопротивление r Д2 , что отражено на рис. 4. (см. статичес­кую характеристику дуги – кривая А ).

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайЕсли ток в цепи изменяется медленно, то току i 1 со­ответствует сопротивление дуги r Д1 ,абольшему току i 2 соответствует меньшее сопротивление r Д2 , что отражено на рис.

Рис. 4. Динамическая вольтамперная характеристика дуги.

В реальных установках ток может меняться довольно быстро. Вследствие тепловой инерции дугового столба изменение сопротивления дуги отстает от изменения то­ка.

Зависимость напряжения на дуге от тока при быст­ром его изменении называется динамической вольтамперной характеристикой .

При резком возрастании тока динамическая характеристика идет выше статической (кривая В ), так как при быстром росте тока сопротивление дуги падает мед­леннее, чем растет ток. При уменьшении – ниже, по­скольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С ).

Динамическая характеристика в значительной степе­ни определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бес­конечно малое по сравнению с тепловой постоянной вре­мени дуги, то в течение времени спада тока до нуля со­противление дуги останется постоянным. В этом случае динамическая характеристика изобразится прямой, про­ходящей из точки 2 в начало координат (прямая D ),т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

Условия гашения дуги постоянного тока.

Чтобы погасить электрическую дугу постоянного тока, необходимо создать такие условия, чтобы в дуговом промежутке при всех значениях тока процессы деионизации протекали бы интенсивнее, чем процессы ионизации.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайЧтобы погасить электрическую дугу постоянного тока, необходимо создать такие условия, чтобы в дуговом промежутке при всех значениях тока процессы деионизации протекали бы интенсивнее, чем процессы ионизации.

Рис. 5. Баланс напряжений в цепи с электрической дугой.

Рассмотрим электрическую цепь, содержащую сопротивление R , индуктивность L и дуговой промежуток с падением напряжения U Д, к которой приложено напряжение U (рис. 5, а ). При дуге, имеющей неизменную длину, для любого момента времени будет справедливо уравнение баланса напряжений в этой цепи:

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайРассмотрим электрическую цепь, содержащую сопротивление R , индуктивность L и дуговой промежуток с падением напряжения U Д, к которой приложено напряжение U (рис.

где падение напряжения на индуктивности при изменении тока.

Стационарным режимом будет такой, при котором ток в цепи не меняется, т.е. а уравнение баланса напряжений примет вид:

Для погасания электрической дуги необходимо, чтобы ток в ней всё время уменьшался, т.е. , а

Графическое решение уравнения баланса напряжений представлено на рис. 5, б . Здесь прямая 1 представляет собой напряжение источника U ; наклонная прямая 2 – падение напряжения на сопротивлении R (реостатная характеристика цепи), вычитаемое из напряжения U , т.е. U – iR ; кривая 3 – вольтамперную характеристику дугового промежутка U Д.

Особенности электрической дуги переменного тока.

Если для гашения дуги постоянного тока необходимо создать такие усло­вия, при которых ток упал бы до нуля, то при переменном токе ток в дуге независимо от степени ионизации дугового промежутка переходит через нуль каждый полупериод, т.е. каждый полупериод дуга гаснет и зажигается вновь. Задача гашения дуги существенно облегчается. Здесь необходимо создать условия, при которых ток не восстановился бы после прохождения через нуль.

Вольтамперная характеристика дуги переменного тока за один период приведена на рис. 6. Поскольку, даже при промышленной частоте 50 Гц, ток в дуге меняется достаточно быстро, то представленная характеристика является динамической. При синусоидальном токе напряжение на дуге сначала увеличивается на участке 1, а затем, в связи с ростом тока, падает на участке 2 (участки 1 и 2 относятся к первой половине полупериода). После прохождения тока через максимум динамическая ВАХ возрастает по кривой 3 в связи с уменьшением тока, а затем уменьшается на участке 4 в связи с приближением напряжения к нулю (участки 3 и 4 относятся ко второй половине этого же полупериода).

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайВольтамперная характеристика дуги переменного тока за один период приведена на рис. 6. Поскольку, даже при промышленной частоте 50 Гц, ток в дуге меняется достаточно быстро, то представленная характеристика является динамической.

Рис. 6. Вольтамперная характеристика дуги переменного тока

При переменном токе температура дуги является величиной переменной. Однако тепловая инерция газа оказывается довольно значительной, и к моменту перехода тока через нуль температура дуги хотя и уменьшается, но остаётся достаточно высокой. Всё же имеющее место снижение температуры при переходе тока через нуль способствует деионизации промежутка и облегчает гашение электрической дуги переменного тока.

Электрическая дуга в магнитном поле.

Электрическая дуга является газообразным про­водником тока. На этот проводник, так же как на метал­лический, действует магнитное поле, создавая силу, про­порциональную индукции поля и току в дуге. Магнитное поле, действуя на дугу, увеличивает ее длину и переме­щает элементы дуги в пространстве. Поперечное перемещение элементов дуги создает ин­тенсивное охлаждение, что приводит к повышению гради­ента напряжения на столбе дуги. При движении дуги в среде газа с большой скоро­стью возникает расслоение дуги на отдельные парал­лельные волокна. Чем длиннее дуга, тем сильнее проис­ходит расслоение дуги.

Дуга является чрезвычайно подвижным проводником. Известно, что на токоведущую часть действуют такие силы, которые стремятся увеличить электромагнит­ную энергию контура. Поскольку энергия пропорцио­нальна индуктивности, то дуга под действием своего собственного поля стремится образовывать витки, петли, так как при этом возрастает индуктивность цепи. Эта способность дуги тем сильнее, чем больше ее длина.

Движущаяся в воздухе дуга преодолевает аэродина­мическое сопротивление воздуха, которое зависит от ди­аметра дуги, расстояния между электродами, плотности газа и скорости движения. Опыт показывает, что во всех случаях в равномерном магнитном поле дуга движется с постоянной скоростью. Следовательно, электродинами­ческая сила уравновешивается силой аэродинамического сопротивления.

С целью создания эффективного охлаждения дуга с помощью магнитного поля втягивается в узкую (диаметр дуги больше ширины щели) щель между стен­ками из дугостойкого материала с высокой теплопровод­ностью. Из-за увеличения теплоотдачи стенкам щели гра­диент напряжения в столбе дуги при наличии узкой щели значительно выше, чем у дуги, свободно перемещающей­ся между электродами. Это дает возможность сократить необходимую для гашения длину и время гашения.

Способы воздействия на электрическую дугу в коммутационных аппаратах.

Цель воздействия на столб возникающей в аппарате дуги состоит в увеличении её активного электрического сопротивления вплоть до бесконечности, когда коммутационный орган переходит в изоляционное состояние. Практически всегда это достигается путем интенсивного охлаждения столба дуги, уменьшения её температуры и теплосодержания, в результате чего снижается степень ионизации и количество носителей электричества и ионизированных частиц и повышается электрическое сопротивление плазмы.

Для успешного гашения электрической дуги в коммутационных низковольтных аппаратах необходимо выполнить следующие условия:

1) увеличить длину дуги путем её растяжения или увели­чения числа разрывов на полюс выключателя;

2) переместить дугу на металлические пластины дугогасительной решётки, которые являются как радиаторами, поглощающими тепловую энергию столба дуги, так и разбивают её на ряд последовательно соединённых дуг;

3) переместить столб дуги магнитным полем в щелевую камеру из дугостойкого изоляционного материала с большой теплопроводностью, где дуга интенсивно охлаж­дается, соприкасаясь со стенками;

4) образовывать дугу в закрытой трубке из газогенерирующего материала – фибры; выделяемые под воздействием температуры газы создают высокое давление, что способствует гашению дуги;

5) уменьшить концентрацию паров металлов в дуге, для чего на этапе проектирования аппаратов использовать соответствующие материалы;

6) гасить дугу в вакууме; при очень низком давлении газа недо­статочно атомов газа, чтобы ионизировать их и поддержать проведение тока в дуге; электрическое сопротивление канала столба дуги стано­вится очень высоким и дуга гаснет;

7) размыкать контакты синхронно перед переходом переменно­го тока через нуль, что существенно снижает выделение тепловой энергии в образовавшейся дуге, т.е. способствует гашению дуги;

8) применять чисто активные сопротивления, шунтирующие дугу и облегчающие условия её гашения;

9) применять шунтирующие межконтактный промежуток полу­проводниковые элементы, переключающие на себя ток дуги, что практиче­ски исключает образование дуги на контактах.

  • Электри́ческая дуга́ (во́льтова дуга́, дугово́й разря́д) — физическое явление, один из видов электрического разряда в газе.

    Впервые была описана в 1802 году русским учёным В. Петровым в книге «Известие о гальвани-вольтовских опытах посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков» (Санкт-Петербург, 1803). Электрическая дуга является частным случаем четвёртой формы состояния вещества — плазмы — и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.

    Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:

    При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и других факторов. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 — 5 В, а напряжение дугообразования — в два раза больше (9 — 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона — до 6 В).

    Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.

    Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.

    Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.

    После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.

    При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с ней осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных, воздушных, элегазовых и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.

Принцип электродуговой сварки основан на использовании температуры электрического разряда, возникающего между сварочным электродом и металлической заготовкой.

Дуговой разряд образуется вследствие электрического пробоя воздушного промежутка. При возникновении этого явления происходит ионизация молекул газа, повышение его температуры и электропроводности, переход в состояние плазмы.

Горение сварочной дуги сопровождается выделением большого количества световой и особенно тепловой энергии, вследствие чего резко повышается температура, и происходит локальное плавление металла заготовки. Это и есть сварка.

В процессе работы, для того, чтобы возбудить дуговой разряд, производится кратковременное касание заготовки электродом, то есть, создание короткого замыкания с последующим разрывом металлического контакта и установлением требуемого воздушного зазора. Таким способом выбирается оптимальная длина сварочной дуги.

При очень коротком разряде электрод может прилипать к заготовке, плавление происходит чересчур интенсивно, что может привести к образованию наплывов. Длинная дуга отличается неустойчивостью горения и недостаточно высокой температурой в зоне сварки.

Неустойчивость и видимое искривление формы сварочной дуги часто можно наблюдать при работе промышленных сварочных агрегатов с достаточно массивными деталями. Это явление называется магнитным дутьем.

Суть его заключается в том, что сварочный ток дуги создает некоторое магнитное поле, которое взаимодействует с магнитным полем, создаваемым током, протекающим через массивную заготовку.

То есть, отклонение дуги вызывается магнитными силами. Дутьем процесс назван потому, что дуга отклоняется, как будто под воздействием ветра.

Радикальных способов борьбы с этим явлением нет. Для уменьшения влияния магнитного дутья применяют сварку укороченной дугой, а также располагают электрод под определенным углом.

Среда горения

Существует несколько различных сварочных технологий, использующих электродуговые разряды, отличающиеся свойствами и параметрами. Электрическая сварочная дуга имеет следующие разновидности:

  • открытая. Горение разряда происходит непосредственно в атмосфере;
  • закрытая. Образующаяся при горении высокая температура вызывает обильное выделение газов от сгорающего флюса. Флюс содержится в обмазке сварочных электродов;
  • в среде защитных газов. В этом варианте, в зону сварки подается газ, чаще всего, это гелий, аргон или углекислый газ.

Защита зоны сварки необходима для предотвращения активного окисления плавящегося металла под воздействием кислорода воздуха.

Слой окисла препятствует образованию сплошного сварного шва, металл в месте соединения приобретает пористость, в результате чего снижается прочность и герметичность стыка.

В какой-то мере дуга сама способна создавать микроклимат в зоне горения за счет образования области повышенного давления, препятствующего притоку атмосферного воздуха.

Применение флюса позволяет более активно выдавливать воздух из зоны сварки. Использование среды защитных газов, подаваемых под давлением, решает эту задачу практически полностью.

Продолжительность разряда

Кроме критериев защищенности, дуговой разряд классифицируется по продолжительности. Существуют процессы, в которых горение дуги происходит в импульсном режиме.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайКроме критериев защищенности, дуговой разряд классифицируется по продолжительности. Существуют процессы, в которых горение дуги происходит в импульсном режиме.

В таких устройствах сварка осуществляется короткими вспышками. За время вспышки, температура успевает возрасти до величины, достаточной для локального расплавления небольшой зоны, в которой образуется точечное соединение.

Большинство же применяемых сварочных технологий использует относительно продолжительное по времени горение дуги. В течение сварочного процесса происходит постоянное перемещение электрода вдоль соединяемых кромок.

Область повышенной температуры, создающая , перемещается вслед за электродом. После перемещения сварочного электрода, следовательно, и дугового разряда, температура пройденного участка снижается, происходит кристаллизация сварочной ванны и образование прочного сварного шва.

Структура дугового разряда

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайОбласть дугового разряда условно принято делить на три участка. Участки, непосредственно прилегающие к полюсам (аноду и катоду), называют соответственно, анодным и катодным.

Центральную часть дугового разряда, расположенную между анодной и катодной областями, называют столбом дуги. Температура в зоне сварочной дуги может достигать нескольких тысяч градусов (до 7000 °C).

Хотя тепло не полностью передается металлу, его вполне хватает для расплавления. Так, температура плавления стали для сравнения составляет 1300-1500 °C.

Для обеспечения устойчивого горения дугового разряда необходимы следующие условия: наличие тока порядка 10 Ампер (это минимальное значение, максимум может достигать 1000 Ампер), при поддержании напряжения дуги от 15 до 40 Вольт .

Падение этого напряжения происходит в дуговом разряде. Распределение напряжения по зонам дуги происходит неравномерно. Падение большей части приложенного напряжения происходит в анодной и катодной зонах.

Экспериментальным путем установлено, что при , наибольшее падение напряжения наблюдается в катодной зоне. В этой же части дуги наблюдается наиболее высокий градиент температуры.

Поэтому, при выборе полярности сварочного процесса, катод соединяют с электродом, когда хотят добиться наибольшего его плавления, повысив его температуру. Наоборот, для более глубокого провара заготовки, катод присоединяют к ней. В столбе дуги падает наименьшая часть напряжения.

При производстве сварочных работ неплавящимся электродом, катодное падение напряжения меньше анодного, то есть, зона повышенной температуры смещена к аноду.

Поэтому, при этой технологии, заготовка подключается к аноду, чем обеспечивается хороший ее прогрев и защита неплавящегося электрода от излишней температуры.

Температурные зоны

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случайСледует заметить, что при любом виде сварки, как плавящимся, так и неплавящимся электродом, столб дуги (его центр) имеет самую высокую температуру – порядка 5000-7000 °C, а иногда и выше.

Зоны наиболее низкой температуры располагаются в одной из активных областей, катодной или анодной. В этих зонах может выделяться 60-70% тепла дуги.

Кроме интенсивного повышения температуры заготовки и сварочного электрода, разряд излучает инфракрасные и ультрафиолетовые волны, способные оказывать вредное влияние на организм сварщика. Это обусловливает необходимость применения защитных мер.

Что касается сварки переменным током, понятие полярности там не существует, так как положение анода и катода изменяется с промышленной частотой 50 колебаний в секунду.

Дуга в этом процессе обладает меньшей устойчивостью по сравнению с постоянным током, ее температура скачет. К преимуществам сварочных процессов на переменном токе, можно отнести только более простое и дешевое оборудование, да еще практически полное отсутствие такого явления, как магнитное дутье, о котором сказано выше.

Вольт-амперная характеристика

На графике представлены кривые зависимости напряжения источника питания от величины сварочного тока, называемые вольт–амперными характеристиками сварочного процесса.

Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга, несчастный случай

Кривые красного цвета отображают изменение напряжения между электродом и заготовкой в фазах возбуждения сварочной дуги и устойчивого ее горения. Начальные точки кривых соответствуют напряжению холостого хода источника питания.

В момент возбуждения сварщиком дугового разряда, напряжение резко снижается вплоть до того периода, когда параметры дуги стабилизируются, устанавливается значение тока сварки, зависящее от диаметра применяемого электрода, мощности источника питания и установленной длины дуги.

С наступлением этого периода, напряжение и температура дуги стабилизируются, и весь процесс приобретает устойчивый характер.

Электрическая дуга — это электрический разряд в газах. Газ сам по себе является изолятором, в нем нет носителей тока. При образовании в газе большого количества электрически заряженных частиц — свободных электронов с отрицательным знаком заряда и положительно и отрицательно заряженных ионов газ начинает проводить ток.

При контакте торца электрода с основным металлом выделяется большое количество тепла, в результате чего ускоряется движение свободных электронов.

При отрыве электрода от основного металла в межэлектродном промежутке электроны сталкиваются с нейтральными атомами газа и ионизируют их, т.е. разделяют на ионы с разными знаками заряда. В результате газ становится электропроводным. Виды эмиссии (выхода) электронов с поверхности торца электрода:

  • термоэлектронная эмиссия;
  • автоэлектронная эмиссия;
  • фотоэлектронная эмиссия;
  • эмиссия электронов за счет потоков тяжелых ионов.

На стабильное горение дуги оказывают влияние процессы образования (ионизации) свободных электронов и ионов в объеме нейтрального газа электрической дуги. Рассмотрим виды ионизации в электрическом разряде.

Ионизация соударением. Движение электронов сильно ускоряется под действием электрического поля в катодной области. Они встречают на своем пути нейтральные атомы газов, ударяются о них и выбивают электроны. Ионизация нагревом (термическая ионизация). Образование ионов в газовой среде наблюдается при температуре выше 1750°С. Ионизация нагревом протекает за счет неупругих столкновений частиц газа с большим запасом кинетической энергии. Ионизация облучения (фотоионизация). При этом ионизация газов в электрической дуге вызывает воздействие на газовый промежуток энергии светового излучения. Ионизация излучением будет происходить в том случае, если энергия световых квантов превысит энергию, необходимую для ионизации частиц газа.

Свойства сварочной дуги

Зажигание сварочной дуги начинается с момента касания электродом свариваемого металла, т.е. с короткого замыкания.

На рис. 1 приведена последовательность процессов при зажигании сварочной дуги.

Так как торец электрода и поверхность свариваемого металла имеют неровности, то контакт между ними при коротком замыкании происходит в отдельных точках (рис. 1а).

Рис.1. Последовательность зажигания сварочной дуги
а — короткое замыкание; б — образование перемычки из жидкого металла; в — возникновение дуги

Поэтому плотность тока в точках контакта достигает больших значений, металл мгновенно расплавляется, образуя перемычку из жидкого металла между электродом и свариваемым металлом (рис. 1б).

При отводе электрода от поверхности металла на некоторую длину, называемую длиной дуги L, жидкая перемычка растягивается с уменьшение сечения, затем в момент достижения металлом перемычки температура кипения испаряется и происходит разрыв перемычки (рис. 1в).

Образуется разрядный промежуток, который заполняется заряженными частицами паров металла, покрытия электрода и газов. Так возникает сварочная дуга, которая представляет собой светящийся столб нагретого газа, состоящего из электронов, ионов и нейтральных атомов.

Это состояние газа называется плазмой, которая электрически нейтральна, так как в ней количество положительных и отрицательных частиц одинаково.

Температура столба дуги выше температуры точки кипения металла электрода и изделия, и конец электрода и изделие отделены от столба дуги промежуточными газовыми слоями, называемыми приэлектродными областями дуги, (рис. 2).

Рис. 2. Схема сварочной дуги.
1 — электроды; 2 — катодное пятно; 3 — катодная область; 4 — столб дуги; 5 — анодная область; 6 — анодное пятно; 7 — сварочная ванна; 8 — свариваемая деталь.

В катодной области 3 из катодного пятна 2 происходит эмиссия электронов в столб дуги 4, где они ионизируют нейтральные атомы.

В катодной области на длине в доли миллиметра сосредоточена значительная часть напряжения дуги, которое называется катодным падением напряжения и достигает 10…16 В.

В анодной области 5 около анодного пятна 6 происходит резкое падение напряжения на длине свободного пробега электрона. Это падение напряжения называется анодным падением напряжения, величина которого составляет 6…8 В. На этом участке электроны резко увеличивают скорость своего движения и нейтрализуются на анодном пятне. Анод получает энергию от дуги в виде потока электронов и теплового излучения, поэтому температура анодной области выше температуры катодной области, и на аноде выделяется большое количество тепла.

При сварке на постоянном токе прямой полярности температура в различных зонах сварочной дуги:

  • в середине столба дуги — около 6000°С;
  • в анодной области — 2600°С;
  • в катодной области — 2400°С;
  • в сварочной ванне – 1700…2000 °С.

При сварке на переменном токе распределение тепла дуги и температура в катодной и анодной областях примерно одинаково (катодная область на электроде).