Усиление железобетонных конструкций

Усиление железобетонных конструкций

Основной принцип усиления конструкций заключается во включении в работу дополнительных элементов,увеличивающих сечение и степень армирования, также и за счет изменения расчетной схемы путем введения дополнительных опор.

Усиление железобетонных колонн возможно производить различными методами . Ряд из них подобен способам усиления кирпичных столбов .

Широко используются способ устройства железобетонных и стальных обойм, метод усиления путем приварки металлических уголков к рабочей арматуре, установка предварительно напряженных хомутов, металлических обойм из уголка и листа, предварительно напряженного арматурного каркаса или хомутов.

На рис. 6.45 приведены некоторые варианты усиления колонн.

Рис. 6.45. Технологические схемы усиления железобетонных колонн
а — стальными обоймами: 1 — колонна; 2 -металлический лист; 3 — уголки; б — наращиванием железобетонных обойм: 1 — железобетонная обойма с отверстием для нагнетания цементно-песчаного раствора; 2 — растворная часть; 3 -дополнительное армирование сеткой; 4 — патрубок; 5 -насос-инъектор; в — усиление рабочей арматуры дополнительными стержнями и обоймой из уголков: 1 — усиливаемая колонна; 2 , 3 -рабочая и наращиваемая арматура; 4 , 5 -уголки; г — усиление рабочей арматуры отдельными стержнями с последующим омоноличиванием: 1 — колонна; 2 -рабочая арматура; 3 , 4 -наращиваемая арматура; 5 , 6 -опалубка; 7 — фиксаторы опалубки

При выполнении работ следует руководствоваться следующими положениями технологии строительных процессов.

При усилении методом наращивания сечения в виде железобетонных обойм следует произвести тщательную очистку поверхности колонн; выполнить насечку, обеспечивающую более высокое сцепление с новым бетоном; при нарушении защитного слоя очистить выступающую на поверхность арматуру, произвести антикоррозийную защиту ; перед укладкой бетонной смеси поверхность колонн увлажнить.

При усилении с помощью металлических уголков и хомутов обязательным условием является плотное сопряжение усиливаемых элементов с поверхностью колонны. Для этой цели осуществляются удаление неровностей и шлифовка поверхности колонн .

Усиление методом наращивания к продольной арматуре дополнительных уголков требует очистки швов после выполнения сварочных работ и омоноличивания вскрытых полостей полимерными растворами. Использование напрягаемых хомутов требует применения инструмента,обеспечивающего равномерность натяжения до расчетных усилий. Залогом качественного выполнения технологических операций являются правильная организация пооперационного контроля и соблюдение технологического регламента.

Особый интерес представляет усиление колонн, примыкающих к наружным или внутренним стенам. Наиболее эффективной технологией остается устройство железобетонной рубашки . Такое решение принимается в случае, когда поверхность колонн сильно разрушена, имеют место отслоение защитного слоя бетона, высокая трещиноватость. Производство работ заключается в очистке поверхности колонны, устройстве насечки, установке дополнительного арматурного каркаса, монтаже опалубочных щитов и нагнетании бетонной смеси в полость. Как правило, перед нагнетанием мелкозернистой бетонной смеси производится обильное увлажнение поверхности колонн.

Нагнетание смеси производится известными установками с обязательным контролем качества работ. Особое внимание уделяется вибрационным воздействиям на щиты опалубки, что обеспечивает более равномерное распределение смеси и заполнение всех пустот и дефектов.

Возможно поярусное бетонирование усиливаемого слоя. В этом случае торцевой щит опалубки выполняется разъемным. После заполнения одного яруса бетонной смесью производят наращивание торцевого щита, и цикл повторяется. В процессе укладки необходимо тщательное уплотнение бетонной смеси глубинным вибрированием.

Достаточно высокий эффект омоноличивания достигается при использовании опалубки в виде вакуум-щитов. Это обстоятельство позволяет удалить значительное количество химически несвязанной воды, что приводит к повышению прочности бетона на 25-30 %. При этом сокращается цикл набора прочности и обеспечивается более ранняя распалубка конструкции.

При увеличении нагрузок на колонну, а также вследствие деструктивных процессов, протекающих в бетоне,повышение несущей способности достигается путем установки разгрузочных элементов в виде швеллеров, объединенных по периметру колонн хомутами.

Несмотря на простоту решения,метод усиления металлоемок и малопригоден в условиях реконструкции жилого фонда.

Для вовлечения в работу элементов стены используют наклонные напряженные хомуты, объединяющие колонну со стеной. Для этой цели на поверхности колонн устраивают штрабы, фиксирующие положение хомутов, а в кирпичной стене — наклонные сквозные отверстия. С помощью натяжных устройств обеспечиваются равномерное натяжение хомутов и вовлечение стены в совместную работу с колонной.

При высокой прочности стен такое решение позволяет усилить колонну. В то же время оно может выполнять и противоположную функцию — повысить устойчивость наружных стен. Это решение может быть успешно использовано при реконструкции старого жилого фонда с применением метода встроенных систем, когда имеет место снижение устойчивости кирпичной кладки стен.

Усиление балочных конструкций осуществляется, как правило, несколькими способами: наращиванием арматуры растянутой зоны; наращиванием балок снизу с увеличением степени армирования и высоты сечения; установкой железобетонных обойм; устройством шпренгельных систем; устройством затяжек по нижнему поясу балок.

Если по расчету требуется незначительное увеличение сечения арматуры растянутой зоны, то процесс усиления осуществляется следующим образом. С шагом 500-600 мм отбивают защитный слой бетона от боковых стержней, оголяют арматуру. Затем осуществляют приварку z -образных коротышей диаметром 20-40 мм,длиной до 200 мм. Далее приваривают дополнительные стержни продольной арматуры(рис. 6.46).

Рис. 6.46. Конструктивно-технологические схемы усиления железобетонных балок
а — наращиванием арматуры растянутой зоны: 1 — усиливаемая конструкция; 2 — наращиваемая зона; 3 -рабочая арматура; 4 -кронштейн для крепления дополнительной арматуры; 5 -наращиваемая арматура; б — наращивание арматуры растянутой зоны в виде уголков: 1 — усиливаемая конструкция; 2 — рабочая арматура; 3 -опорный уголок; 4 — дополнительное армирование; 5 — зона заделки цементно-полимерным раствором; в — устройство затяжки по нижнему поясу: 1 — усиливаемая конструкция; 2 — дополнительная арматура; 3 -коротыш; 4 -натяжное устройство; г -дополнительное армирование нижнего пояса: 1 — усиливаемая конструкция; 2 -арматура усиления; 3 -полимерцементный раствор

После установки дополнительной арматуры осуществляется ее защита. Наиболее эффективной технологией является торкретирование . В то же время имеется ряд композиционных растворов, которые обладают хорошей адгезией со старым бетоном и арматурой и наносятся методом оштукатуривания.

Для более высокой степени усиления балочных конструкций используется для дополнительного армирования уголковая сталь, которая с помощью коротышей и сварных соединений фиксируется к крайним стержням арматуры.

Сколы бетона после выполнения всех операций заделываются цементно-песчаным раствором.

Усиление нижнего пояса отдельными стержнями осуществляется путем устройства затяжек, а также путем расположения дополнительных стержней в пазы с последующим омоноличиванием полимерцементными высокоадгезионными составами. Пазы образуют, используя специальный ручной инструмент с алмазным напылением.

Для зданий жилого фонда шпренгельное усиление балок используется чрезвычайно редко, так как требует периодического наблюдения за состоянием конструкции, а содержание без экранов и подвесных потолков нарушает интерьер помещений.

Усиление и восстановление несущей способности перекрытий являются наиболее распространенными задачами при реконструкции зданий.

По результатам обследований и оценки степени износа конструктивных элементов принимают решение о восстановлении, усилении несущей способности, частичной или полной замене перекрытий. Принятию решения предшествует технико-экономическая оценка вариантов.

Конструктивные решения перекрытий для зданий различного периода строительства весьма разнообразны. К наиболее распространенным следует отнести: каменные перекрытия по несущим металлическим балкам; монолитные балочные и безбалочные; сборные из сплошного и многопустотного настилов; сборные по балкам из штучных материалов и др. В перечисленные типы перекрытий не вошли деревянные, так как срок их эксплуатации и физический износ многократно превышают допустимые нормы.

Каменные перекрытия по металлическим балкам, как правило, выполнялись в подвальных этажах жилых зданий.Они представляют собой арочное перекрытие из кирпича по несущим металлическим балкам из двутавра или рельса. В зависимости от степени физического износа кирпичной кладки возможны следующие варианты усиления: установка затяжек для восприятия распора с частичным восстановлением кладки; устройство железобетонного наращивания сверху; устройство железобетонного наращивания снизу в виде арочной плиты; замена кирпичного арочного перекрытия на железобетонные.

Способы усиления монолитных перекрытий достаточно разнообразны и приведены на рис. 6.47. Основой усиления является увеличение степени армирования растянутой или сжатой зоны с одновременным наращиванием сечения.

Рис. 6.47. Конструктивно-технологические схемы усиления монолитных перекрытий
а -путем наращивания арматуры растянутой зоны и торкретирования поверхностей; б , в — устройством дополнительного армирования плиты с наращиванием верхнего железобетонного слоя;г — установкой звуко- и виброизоляционных плит и наращиванием верхнего железобетонного слоя; 1 железобетонное перекрытие; 2 -наращиваемая арматура; 3 -дополнительный слой бетона; 4 -штрабы; 5 — подвесная опалубка; 6 — шумо- и виброзащитные плиты

Наиболее сложным и достаточно трудоемким является вариант усиления, основанный на установке дополнительных стержней арматуры в растянутой зоне. В этом случае с интервалом 60-120 см по длине вскрывается рабочая арматура на участках длиной 2-12 см, к которой с помощью Z -образных кронштейнов приваривается дополнительная арматура. Затем осуществляется торкретирование поверхности для обеспечения требуемой адгезии и защитного слоя.

Рассматриваемый способ целесообразно использовать, когда нижняя поверхность перекрытия имеет существенные дефекты в виде разрушения бетона, при утрате защитного слоя арматуры, высокой трещиноватости поверхности и в других случаях.

Перед выполнением работ по наращиванию дополнительной арматуры осуществляют очистку поверхности с помощью пескоструйных аппаратов, обеспечивающих также очистку арматуры от коррозии.

Процесс торкретирования осуществляется по известной технологии путем нанесения 3-4 слоев. Как правило,работы по торкретированию потолочных поверхностей весьма трудоемки, требуют использования специальных составов бетона и методов пооперационного контроля.Особое внимание при этом должно уделяться соблюдению режимов тепловлажностной обработки и уходу за поверхностью торкрет-слоев, чтобы не допустить высыхания.

Более простыми и эффективными являются методы, основанные на поверхностном наращивании железобетонных слоев,а также устройстве дополнительных балочных систем.

По данной технологии в плите перекрытия вырезаются сквозные продольные штрабы параллельно расположению рабочей арматуры. Затем устанавливаются подвесная опалубка, арматурный каркас,после чего производят укладку бетонной смеси. Одновременно производят работы по армированию наращиваемого поверхностного слоя. До укладки бетонной смеси необходимо выполнить работы по насечке бетонной поверхности, а перед непосредственной укладкой смеси — увлажнение.

Укладку смеси производят за один прием с использованием виброреек и маячных досок с соблюдением известного технологического регламента. Особое внимание уделяется вибрационной проработке густоармированной области штраб, где используются глубинные вибраторы с гибким валом. Предотвращение смещения арматуры от проектного положения должно обеспечиваться использованием фиксаторов. Более простым технологическим решением является усиление перекрытий путем наращивания слоя железобетона. В этой связи следует отметить, что для повышения адгезии старого бетона с вновь укладываемым целесообразно на предварительно очищенную поверхность осуществить наклейку полимерной или металлической сетки на бентонитовом растворе. Помимо высокой адгезии при этом исключается весьма трудоемкий и экологически неблагоприятный процесс устройства насечек на старой поверхности бетона. Процесс бетонирования производится через 6-8 ч после наклейки сетки.

На рис. 6.47,г приведена конструктивно-технологическая схема, направленная на повышение не только несущей способности перекрытия, но и на повышение его вибро-, шумоизолирующих свойств. В качестве изоляционного материала могут использоваться плитный пенополистирол толщиной 2-4 см, жесткие минераловатные плиты, прессованный картон и другие материалы. Они наклеиваются на заранее подготовленную поверхность перекрытия таким образом, чтобы оставалось свободное пространство для армирования и устройства ребра наращиваемого перекрытия. После выполнения работ по армированию производят подачу и укладку бетонной смеси одним из приемлемых способов.

Конструктивное решение такого метода усиления позволяет без дополнительного расхода бетона увеличить высоту сжатой зоны, тем самым повысив несущую способность перекрытия.

Технологические схемы производства работ по усилению перекрытий реконструируемого здания базируются на механизированных процессах транспортирования композиционных смесей к месту укладки. Кроме широко распространенного бетононасосного транспорта используются пневмонагнетатели, цемент-пушки, растворонасосы. Они обеспечивают шланговую подачу смесей на высоту до 30 м и до 200 м по горизонтали. Как правило, для сохранения стабильных физико-механических и технологических свойств смеси приготавливаются в сухом состоянии с заданными пропорциями. На строительную площадку они доставляются в упакованной таре, и достаточно внести указанное количество воды, чтобы получить требуемую консистенцию.

Отличительными особенностями использования транспортных средств для доставки композиционных смесей являются их высокая производительность (до 5 м 3 /ч), малочисленность обслуживающего персонала и надежность в работе. Эти обстоятельства позволяют довести выработку на одного рабочего в пределах 150-200 м 2 в смену.

Усиление перекрытий из многопустотного настила осуществляется технологическими приемами, приведенными на рис. 6.48, путем верхнего наращивания слоя железобетона; установки дополнительной арматуры нижнего пояса и использования пустот. Последний вариант является наиболее эффективным, так как позволяет значительно увеличить несущую способность конструкции без заметного увеличения ее высоты при дополнительном армировании зоны пустот. Технология производства работ мало отличается от ранее рассмотренных и ведется традиционными приемами.

Усиление перекрытий из многопустотного настила осуществляется технологическими приемами, приведенными на рис. 6.48, путем верхнего наращивания слоя железобетона; установки дополнительной арматуры нижнего пояса и использования пустот.

Рис. 6.48. Технологические схемы усиления перекрытий из многопустотного настила
а — методом наращивания железобетонного поверхностного слоя: 1 2 -металлическая сетка; 3 — слой наращиваемого бетона; б — дополнительным армированием нижнего пояса: 1 -многопустотная плита перекрытия; 2 -дополнительная арматура, устанавливаемая в пазы; 3 -омоноличивание арматуры; в ,г — путем армирования и бетонирования пустот: 1 -многопустотная плита перекрытия; 2 — продольные и поперечные сетки; 3 -слой наращиваемого бетона; 4 — арматура в виде двутавров; д , е — схемы дополнительного армирования зон опирания на стены

Метод верхнего наращивания плит перекрытий железобетоном кроме увеличения несущей способности способствует образованию горизонтальных дисков жесткости, что в значительной степени приводит к повышению пространственной жесткости реконструируемых зданий.

Локальные приемы и технологии повышения монолитности перекрытий (рис. 6.49) могут быть достигнуты путем анкеровки железобетонных плит с наружными стенами, установкой анкерных связей в виде стержней и каркасов, устройством шпонок, монолитного обвязочного пояса,объединенного с плитами, и др. приемами.

Локальные приемы и технологии повышения монолитности перекрытий (рис. 6.49) могут быть достигнуты путем анкеровки железобетонных плит с наружными стенами, установкой анкерных связей в виде стержней и каркасов, устройством шпонок, монолитного обвязочного пояса,объединенного с плитами, и др.

Рис. 6.49. Конструктивно-технологические решения включения в совместную работу железобетонных плит перекрытия
а — усиление анкеровки железобетонных плит; б — установка анкерных связей в виде стержней; в — то же, армокаркасами; г -устройство обвязочного монолитного пояса; д , е -устройство шпонок и железобетонного наращивания

Совместная работа плит перекрытий позволяет перераспределить постоянные и временные нагрузки, снизить величину прогибов и исключить случаи нарушения сцепления материала шва между плитами.

Усиление конструкций композитными материалами из углеродных волокон

Данный метод является наиболее прогрессивным, менее трудоемким и более надежным. Его использование достаточно универсально, не вызывает дополнительных нагрузок.

Углеродные композитные материалы обладают высокой прочностью на растяжение, модулем линейной упругости,коррозийной стойкостью.

Они успешно используются при выполнении ремонтно-восстановительных работ с целью повышения несущей способности различных конструктивных элементов колонн, балок, плит перекрытий,выполненных из железобетона, металла, кирпича, дерева и др. материалов.

Разработаны три типа графитопластиковых лент с расчетным сопротивлением растяжению 2800, 2400 и 1300МПа.

Ленты поставляются в бухтах с общей длиной до 250 м, шириной от 50 до 120 мм и толщиной 1,2-1,4 мм.

Основной способ усиления состоит в наклейке лент или полотнищ из углеродистых волокон на усиливаемые конструкции(рис. 6.50). В качестве клеящего материала используют специальные составы эпоксидных клеев, а также ремонтные растворы. Качество усиления конструктивных элементов зависит от подготовки основания и соблюдения технологического регламента.

Основной способ усиления состоит в наклейке лент или полотнищ из углеродистых волокон на усиливаемые конструкции(рис. 6.50). В качестве клеящего материала используют специальные составы эпоксидных клеев, а также ремонтные растворы.

Рис. 6.50. Усиление несущих конструкций композитными материалами в виде лент из углеродистых волокон
а -колонн; 6 -балок; в — плит перекрытий; г — графики набора прочности клея на сжатие ( I ) и растяжение ( II ); 1 — наклеиваемые ленты; 2 — защитные покрытия

Основание усиливаемой конструкции должно быть ровным, обезжиренным, обеспыленным и чистым. При наличии раковин и выколов основание шпатлюется ремонтным полимерным раствором.

Технология производства работ состоит в нанесении на подготовленную поверхность и ленту клеящего состава толщиной прослойки в пределах 3-5 мм. Затем осуществляется наклейка ленты с прижатием с помощью ролика таким образом, чтобы избыток клеящей массы был выдавлен за пределы кромок.

Усиление колонн цилиндрической или прямоугольной формы осуществляется наклейкой ленты с расположением по спирали с расчетным шагом, а также путем наклейки полотнищ по периметру колонн.

Балочные конструкции получают дополнительное усиление путем размещения лент в растянутой зоне, а для восприятия поперечных сил — по периметру. Плиты перекрытия могут усиливаться путем наклейки лент в продольном и поперечном направлениях. При усилении конструкций целесообразно осуществлять небольшую тепловую обработку составов.Это позволяет за 8-12 ч достигать требуемой адгезии с поверхностью усиливаемой конструкции.

Простота технологии наклейки,малая масса и коррозионная стойкость позволяют широко использовать данную технологию для усиления конструкций реконструируемых зданий при наличии дефектов,трещинообразования, а также при возросших нагрузках.

Элементы колонн усиливаются с помощью металлических (рисунок 1, а) или железобетонных обойм (рисунок 1, б). Также нередко применяются штукатурные обоймы с армированием. Для железобетонных колон, находящихся в крайних рядах, усиление выполняется рубашками, так как четырехстороннее наращивание получается крайне редко выполнить. Колонны, применяемые при внецентренном сжатии с большими эксцентриситетами, усиливаются с помощью одно или двухстороннего наращивания.

Рис.1. Типы обойм: а — железная, б — железобетонная.

Эти конструкции не только исключают деформацию элемента, который они усиливают путем увеличения прочности на сжатие элемента, но и частично принимают общую нагрузку объекта на себя.

Поперечные деформации уменьшают планки железных обойм и хомуты для железобетонных, а вертикальные нагрузки принимают на себя вертикальные уголки и бетон с продольным армированием.
При использовании преднапряжения, создаваемого в планках путем нагрева, попарного стягивания или использования натяжных гаек, можно увеличить коэффициент объемного напряжения. С помощью этого способа также повышается уровень давления на вертикальные уголки металлических обойм.

Как создается преднапряжение

Относительно легкий вариант — это монтаж специально перегнутых уголков, которые впоследствии будут вытягиваться при их горизонтальном стягивании (рис. 2). При выпрямлении уголки становятся распорками, в которых появляется сжимающиеся усиление, и от его величины зависит степень снятия нагрузки с колонны. В формуле расчета коэффициент считается равным 0,9, I означает tga, а общая площадь поперечного сечения уголков обозначается как Asc.

Важно помнить, что эти расчеты будут верны при условии достаточно надежных упорах в краях уголков в начале их стягивания. Этот вариант подходит для колонн с малыми и большими эксцентриситетами (на рисунке обозначены как а и б соответственно).

При усилении колонн в многоэтажном строительстве следует первым делом усилить колонны нижележащих этажей, иначе в противном случае увеличивается давление на нижние перекрытия, что приводит к деформации не усиленных колон, расположенные ниже.

При усилении колонн в многоэтажном строительстве следует первым делом усилить колонны нижележащих этажей, иначе в противном случае увеличивается давление на нижние перекрытия, что приводит к деформации не усиленных колон, расположенные ниже.

Рис.2. Усиление при помощи преднапряженной подпорки.

Усиление с применением металлических обойм

При этом варианте обоймы можно рассматривать как отдельные части конструкции, где несущую роль выполняют вертикальные уголки. Планки в обоймах выполняют те же функции, что и в металлических решетчатых колоннах. Проще говоря, действие планок в снижении деформации бетона даже не учитывается.

Максимальная эффективность получается от применения преднапряженных обойм — распорок, для которых разгружение колонны необязательно. Разрабатывая проект с их использованием, важно учитывать момент, что усилие Nsp может оторвать перекрытия от колонны, и продавить опоры перекрытий. Сложность монтажа обойм к тому же заключается большой гибкости уголков в процессе стягивания, когда они еще не соединенные между собой планками.

Без применения преднапряжения железные обоймы лучше устанавливать, когда часть колонны либо вся колонна полностью разгружена и когда зазоры между уголками и поверхностями минимальны, что на практике случается достаточно редко. В таких случаях усиление конструкции рассчитывается по следующему принципу: чем меньше напряжения было снято с основной конструкции, тем меньшее давление оказывается на уголки обоймы, и как следствие малая её эффективность.

Применение железобетонных элементов

При усилении этим видом большинство справочников предлагают определить поперечное сечение как монолитное, с аналогичными им коэффициентами, но опираясь на поправку, согласно разнице в классе бетона между старыми и новыми участками.

Напряжение на элемент передается с помощью упорных (горизонтальных) уголков, плотно прижимающихся при помощи выравнивающего слоя к частям различных деталей конструкции, впоследствии приваренные к вертикальным уголкам (рисунок 3).

Напряжение на элемент передается с помощью упорных (горизонтальных) уголков, плотно прижимающихся при помощи выравнивающего слоя к частям различных деталей конструкции, впоследствии приваренные к вертикальным уголкам (рисунок 3).

Рисунок 3. Как передается напряжения на обойму.

Необходимо знать, что значение передачи напряжения на вертикальные уголки не высокое. Отчасти это происходит из-за того, что при усилении в многоэтажных объектах часть нагрузки ложится на перекрытия нижнего уровня. Необходимо быть твердо уверенным в способности этих перекрытий поглотить увеличенную нагрузку. К тому же для передачи усиления на обойму необходимо снять нагрузку с колонны. А в многоэтажных зданиях для разгрузки колон нижнего уровня снять нагрузку с колонн на всех уровнях здания, и тогда усиливающие элементы по нисходящей станут передавать напряжение на элементы нижнего уровня. Если этим пренебречь, то в итоге на нижестоящие обоймы передастся только нагрузка нижнего этажа.

Исходя из особенностей, достаточно редко получается использовать уголки без их предварительного напряжения. При недостаточно плотно либо неравномерно прижатых к поверхности уголках, усиливаемый элемент продолжит деформироваться до полного исчезания зазора между планками и поверхностью. Подобный уровень выполнения работ достаточно часто встречается, правда положительно эффекта от такого усиления никакого.

Необходимо уделить особое внимание во время монтажа планке – нужно её максимальное взаимодействие с поверхностью, что позволит передать напряжение на обойму.

Выходов из ситуации несколько:
1. Первый метод заключается в прижатии уголков к планкам при помощи струбцин с последующей сваркой элементов.

2. Можно предварительно нагрузить планки с помощью электронагрева или используя натяжные гайки. Для гаек в качестве планок используются стержни с резьбою.

Между уголками и элементами, которые необходимо усилить, обязательно нужно проложить раствор, который выправит площадь соприкосновения.
Эти требования применяются при усилении простенков во время прорезания в них новых проемов. Если во время работ использовались отбойные молотки или перфораторы, то применение металлических обойм практически бессмысленно, так как неровные края проемов будет образовывать с уголками зазор нередко больше сантиметра, что делает невозможным передачу напряжения на обойму. Проемы рекомендуется прорезать в стенах при помощи дисковой пилы.

По высоте планки необходимо устанавливать между собой на расстоянии, не превышающим 50 см, либо не больше чем поперечный диаметр элемента, подлежащего усилению. Это необходимо для предотвращения разрушения элемента между планками

По высоте планки необходимо устанавливать между собой на расстоянии, не превышающим 50 см, либо не больше чем поперечный диаметр элемента, подлежащего усилению.

Рис.4. Схема стягивания поперечных планок железной обоймы.

Чем шире получаются простенки, тем меньше эффект от установленных планок, поэтому при ширине, двукратно превышающей толщину, нужно длинные планки попарно соединять при помощи болтов (рисунок 4). Болты проходят сквозь отверстия в кладке с расстоянием не больше 75 см по высоте и одного метра в ширину(или на ширину, не превышающую толщину простенка, увеличенную вдвое).

Выбор того или иного метода усиления строительных конструкций зависит от технического задания на реконструкцию здания или сооружения, которое включает изменение объемно-планировочных решений, нагрузок и условий эксплуатации. Основные причины усиления железобетонных конструкций приведены в табл. 1, а способы увеличения несущей способности конструкций — в табл. 2.

Причины усиления железобетонных конструкций

Увеличение нагрузок на них в результате замены либо усиления вышераспо­ложенных конструкций (перестройка помещений, надстройка зданий)

Модернизация технологического оборудования в реконстру­ируемом здании, изменение технологических процессов

Эксплуата­ционный износ (потеря несущей способности)

Конструктив­ные дефекты и возникшие в результате неправильной эксплуатации конструкции

Случайные повреж­дения (при демонтаже и монтаже)

Табл. 1. Основные причины усиления железобетонных конструкций

Способы увеличения несущей способности

Без изменения их напряженного состояния или конструктивной схемы

С изменением напряженного состояния или конструктивной схемы конструкций

Железобетонные, металлические обоймы, железобетонные рубашки, наращивание

Преднап ряженные распорки; металлические балки, опираемые на сваи-консоли; стойки; подкосы; горизонтальные шпренгельные и комбинированные затяжки

Табл. 2. Способы увеличения несущей способности конструкций

Одним из наиболее эффективных способов усиления железобетонных колонн является устройство железобетонных и металлических обойм. В изгибаемых элементах обоймы применяют при значительной коррозии арматуры.

Железобетонная обойма состоит из арматуры и тонкого слоя бетона, охватывающего усиливаемый элемент с четырех сторон (балки, ригели, колонны).

Наиболее простым типом являются железобетонные обоймы с обычной продольной и поперечной арматурой без связи арматуры обоймы с арматурой усиливаемой колонны. При этом способе усиления важно обеспечить совместную работу «старого» и «нового» бетона, что достигается тщательной очисткой поверхности бетона усиливаемой конструкции пескоструйным аппаратом, насечкой или обработкой металлическими щетками, а также промывкой под давлением непосредственно перед бетонированием. Для повышения адгезии и защиты бетона и арматуры в агрессивных условиях эксплуатации рекомендуется применение полимербетонов.

Толщина обоймы колонн определяется расчетом и конструктивными требованиями (диаметром продольной и поперечной арматуры, величиной защитного слоя и т.п.). Как правило, она не превышает 300 мм. Площадь рабочей продольной арматуры также определяют расчетом.

При местном усилении обойму продлевают за пределы поврежденного участка на длину не менее длины анкеровки арматуры, а также не менее двойной ширины большей грани колонны, но не менее 400 мм. Для улучшения сцепления «нового» и «старого» бетона рекомендуется выполнять адгезионную обмазку из полимерных материалов.

Поперечная арматура железобетонной обоймы может быть выполнена в виде спиральной обмотки из проволоки диаметром не менее 6 мм. Более эффективны (но и более трудоемки) железобетонные обоймы, в которых обеспечивается связь существующей и дополнительной арматуры. Такие обоймы рекомендуются при сильном повреждении существующей арматуры или защитного слоя бетона. В этом случае арматуру усиливаемой конструкции тщательно очищают до чистого металла, разрушенные хомуты восстанавливают путем пробивки в бетоне поперечных борозд, установки в них новых хомутов и соединения их с продольной арматурой.

Дополнительную продольную арматуру приваривают к существующей с помощью соединительных коротышей, которые во избежание пережогов выполняют из арматуры класса A-I диаметром 10-16 мм и располагают на расстоянии друг от друга не менее 20 диаметров продольной арматуры в шахматном порядке.

При невозможности выполнения замкнутой обоймы, например при примыкании колонны к стене, рекомендуется устройство «рубашек» — незамкнутых с одной стороны обетонок. При этом способе усиления необходимо обеспечить надежную анкеровку поперечной арматуры по концам поперечного сечения «рубашек». В колоннах это осуществляется путем приварки хомутов к существующей арматуре.

При усилении «рубашками» локальных поврежденных участков, как и при усилении обоймами, их необходимо продлить на неповрежденные части конструкции на длину не менее 500 мм, а также не менее длины анкеровки продольной арматуры, не менее ширины грани элемента или его диаметра и не менее пятикратной толщины стенки «рубашки».

Эффективность включения металлической обоймы в работу колонны зависит от плотности прилегания уголков к телу колонны и предварительного напряжения поперечных планок. Для плотного прилегания уголков поверхность бетона по граням колонн тщательно выравнивается скалыванием неровностей и зачеканкой цементным раствором. Предварительное напряжение соединительных планок осуществляется термическим способом. Для этого планки приваривают одной стороной к уголкам обоймы, затем разогревают газовой горелкой до 100-120°С и в разогретом состоянии приваривают второй конец планок. Замыкание планок осуществляют симметрично от среднего по высоте колонны пояса. При остывании планок происходит обжатие поперечных сечений колонны, что приводит к повышению несущей способности.

Металлическая обойма состоит их стоек углового профиля, соединительных планок, опорных подкладок (рис. 1).

Зам. директора института Гликин С.М.

Нач. отдела инженерных сооружений Туголуков А.М.

Главный специалист Ильин В.Т.

I. ОБЩИЕ ПОЛОЖЕНИЯ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее пособие представляет собой практическое руководство по обследованию, оценке несущей способности и восстановлению конструкций зданий и сооружений, получивших повреждения во время эксплуатации. Рекомендации пособия распространяются также на конструкции, необходимость усиления которых возникает в связи с увеличением нагрузок при реконструкции.

1.2. По результатам обследования устанавливается пригодность конструкции к эксплуатации, необходимость ее ремонта или усиления.

1.3. Повреждения строительных конструкций в зависимости от причин их возникновения могут быть разделены на следующие группы:

— от силовых воздействий;

— от воздействия внешней среды;

— от температурных воздействий (пожара);

— в результате чрезвычайных ситуаций (землетрясения, наводнения, взрыва и др.).

1.4. Характерными повреждениями железобетонных строительных конструкций от силовых воздействий являются нормальные и наклонные трещины в элементах конструкций, чрезмерные прогибы, выпучивание сжатой арматуры, выкрашивание бетона в сжатой зоне и др.

1.5. Основными дефектами конструкций, возникающими от воздействия внешней среды, является коррозия бетона и арматуры, разрушение материалов от попеременного замерзания и оттаивания и других факторов.

1.6. Дефекты, возникающие от воздействия высоких температур, характеризуются, как правило, изменением цвета бетона, образованием на поверхности бетона сетки из мелких трещин с отслаиванием защитного слоя, а также появлением в растянутой зоне бетона вертикальных и наклонных трещин, появлением прогиба сверх нормативного и др.

1.7. В зависимости от характера и величины повреждений, для конструкций установлено пять категорий их технического состояния, которые определяют соответствующие мероприятия по восстановлению их эксплуатационной надежности.

Под эксплуатационной надежностью строительных конструкций понимается сохранение во времени установленной нормами или проектом несущей способности и долговечности конструкции.

1.8. Количественные и качественные параметры дефектов строительных конструкций устанавливаются на основе визуальных обследований с использованием простейших измерительных инструментов (щупов, линейки, лупы и др.).

1.9. В пособие включены наиболее надежные в эксплуатации и простые в исполнении способы усиления конструкций.

1.10. При расчете несущей способности усиливаемой конструкции вводятся коэффициенты условия работы, дифференцированные в соответствии с категориями технического состояния, которые отражают степень поврежденности конструкции.

1.11. При разработке настоящего пособия использована научно-техническая документация по обследованию, ремонту и усилению железобетонных и стальных конструкций зданий и сооружений, список которой приведен в приложении.

1.12. Пособие предназначено для инженерно-технических работников проектных, производственных и ремонтно-строительных организаций, а также для работников служб, занимающихся эксплуатацией зданий и сооружений.

2. КЛАССИФИКАЦИЯ ДЕФЕКТОВ ЖЕЛЕЗОБЕТОННЫХ И СТАЛЬНЫХ КОНСТРУКЦИЙ ПО ВНЕШНИМ ПРИЗНАКАМ

2.1. Работы, связанные с усилением и ремонтом строительных конструкций в значительной мере зависят от того, насколько объективно и квалифицированно проведены натурные обследования с точки зрения достоверности имеющихся дефектов.

2.2. В зависимости от имеющихся повреждений техническое состояние конструкций может быть классифицировано на пять категорий (состояний):

Категория 1 — Нормальное состояние.

Категория 2 — Удовлетворительное состояние.

Категория 3 — Неудовлетворительное состояние.

Категория 4 — Предаварийное состояние.

Категория 5 — Аварийное состояние.

2.3. К категории 1 относятся конструкции, усилия в элементах которых не превышают допустимые по расчету, т.е. отсутствуют видимые повреждения, свидетельствующие о снижении несущей способности. При этом могут быть отдельные раковины, выбоины в пределах защитного слоя.

2.4. К категории 2 относятся конструкции, потеря несущей способности которых не превышает 5%, но имеющиеся в них дефекты способны со временем снизить долговечность конструкции. К дефектам конструкций этой категории относятся такие, как повреждение защитного слоя, частичная коррозия арматуры и др.

2.5. К категории 3 относятся конструкции, не пригодные к дальнейшей нормальной эксплуатации. При этом конструкция перегружена или имеются дефекты и повреждения, свидетельствующие о снижении ее несущей способности. В этом случае необходим поверочный расчет несущей способности конструкции и выполнение работ по ремонту и усилению.

2.6. К категории 4 относятся конструкции, дефекты и повреждения которых не могут гарантировать сохранность конструкции и безопасность ее эксплуатации. Для конструкций этой категории необходим капитальный ремонт с усилением. До проведения усиления необходимо ограничение нагрузок и принятие необходимых мер по безопасности.

2.7. Категория 5 включает конструкции, находящиеся в аварийном состоянии, установленном на основании поверочных расчетов и анализа дефектов и повреждений, В этом случае нет гарантии сохранности конструкций на период усиления. Конструкции подлежат замене или требуют капитальных ремонтно-восстановительных работ с немедленной разгрузкой конструкций и устройством временных креплений.

2.8. Предельные значения дефектов железобетонных балок и плит, соответствующие различным категориям технического состояния конструкций, приведены в таблице 1, а их характерные повреждения показаны на рис.1.

Предельно допустимые значения параметров дефектов для различных категорий технического состояния железобетонных балок и плит

Таблица 1

Вид разрушения

Ширина раскрытия нормальных трещин (рис.1а), мм

Ширина раскрытия наклонных трещин (рис.1б), мм

Прогиб балок (рис.1в)

То же, подкрановых балок

более 1/200

Снижение прочности бетона (рис.1г), %

Уменьшение поперечного сечения арматуры в результате коррозии (рис.1г), %

Рис.1. Дефекты железобетонных балок

Рис.1. Дефекты железобетонных балок

а) вертикальные нормальные трещины в пролете;

б) наклонные трещины у опор;

в) прогиб;

г) разрушение бетона, коррозия арматуры и бетона


Предельные значения дефектов железобетонных колонн и их характерные повреждения приведены в таблице 2 и на рис.2.

Предельно допустимые значения параметров дефектов для различных категорий технического состояния железобетонных колонн

Таблица 2

Вид разрушения

Ширина раскрытия продольных (вертикальных) трещин (рис.2а), мм

Ширина раскрытия поперечных (горизонтальных) трещин (рис.2б), мм

Уменьшение поперечного сечения колонны в результате коррозии бетона (рис.2в), %

Уменьшение поперечного сечения продольной арматуры в результате коррозии (рис.2в), %

Выпучивание сжатой арматуры (рис.2г)

Рис.2. Дефекты железобетонных колонн

Рис.2. Дефекты железобетонных колонн

а) продольные трещины;

б) поперечные трещины;

в) коррозия бетона и арматуры;

г) выпучивание сжатых стержней арматуры

2.9. Для железобетонных конструкций, подвергнутых температурному воздействию при пожаре, категория технического состояния, в зависимости от возникших дефектов, определяется по таблице 3.

Таблица 3

Оценка состояния железобетонных конструкций при температурных воздействиях (пожарах)

Контролируемый показатель

В пределах допустимого нормами

Более, чем допускается нормами

Изменение цвета бетона

До розового

От розового до красного

До темно-желтого

Оголение рабочей арматуры

Оголена часть периметра рабочей арматуры на длину не более 20 см, кроме зоны анкеровки

Оголена часть периметра рабочей арматуры на длину не более 40 см, кроме зоны анкеровки

Оголена рабочая арматура по всему периметру на длину не более 30 см, кроме стержней в зоне анкеровки

Оголена рабочая арматура по всему периметру, включая стержни в зоне анкеровки

Отслаивание поверхностного слоя бетона от основной массы конструкции

Местами (до 3-х мест) в пределах защитного слоя бетона на площади не более 30 см каждое

Местами в пределах защитного слоя бетона на площади не более 50 см, кроме зоны анкеровки

На глубину более толщины защитного слоя бетона, но не более 5 см, кроме зоны анкеровки

На глубину более 5 см

Трещины в бетоне, не более, мм

Снижение прочности бетона, %

2.10. Для установления категории технического состояния конструкции достаточно наличия одного из наиболее опасных дефектов, указанных в таблицах, характеризующего эту категорию.

2.11. Ширина раскрытия трещин в железобетонных конструкциях определяется при помощи щупов или других инструментов, обеспечивающих точность измерений не ниже 0,01 мм, например, лупы с масштабными делениями.

2.12. Для оценки прочности бетона строительных конструкций могут быть применены следующие методы:

— упрощенный, с использованием простейших инструментов (зубила, молотка);

— с применением специальных инструментов (молотка Кашкарова, молотка Физделя);

2.13. Определение прочности бетона упрощенным способом производится путем оценки результатов удара молотком или зубилом по поверхности бетона. При этом делают 10 ударов средней силы молотком весом 0,3-0,4 кн непосредственно по бетону или зубилу, установленному жалом на поверхности бетона. Для оценки прочности бетона используются данные табл.4.

Таблица 4

Определение прочности бетона при помощи молотка и зубила

Прочность бетона на сжатие, кПа

Способ оценки прочности бетона

ребром молотка

зубилом

Звук бетона глухой, остается неглубокий след, края вмятины не осыпаются

Зубило относительно легко вбивается в бетон на глубину 10-15 мм

Бетон крошится и осыпается, остаются вмятины

Зубило погружается в бетон на глубину около 5 мм

Остается заметный след на поверхности бетона, вокруг которого откалываются тонкие лещадки

На поверхности бетона отделяются тонкие лещадки

Звук бетона звонкий, остается слабо заметный след на поверхности бетона

Остается неглубокий след, лещадки не отделяются, при царапании остаются мало заметные штрихи

2.14. Оценка прочности бетона механическими методами с помощью молотка Кашкарова или молотка Физделя основывается на величине внедрения бойка в поверхностный слой бетона.

Принцип действия молотка Кашкарова заключается в том, что между металлическим молотком и завальцованным шариком имеется отверстие, в которое вводится контрольный металлический стержень. При ударе молотком по поверхности конструкции получается два отпечатка: на поверхности материала с диаметром , на конрольном (эталонном) стержне с диаметром . Отношение диаметров получаемых отпечатков зависит от прочности обследуемого материала и эталонного стержня и практически не зависит от скорости и силы удара, наносимого молотком. По среднему значению величины по графику на рис.3 определяют прочность материала.

Рис.3 Зависимость прочности бетона на сжатие от соотношения D/d (молоток Кашкарова)

Рис.3 Зависимость прочности бетона на сжатие от соотношения (молоток Кашкарова)

Диаметр лунки на поверхности бетона; — то же, на контрольном стержне

На участке испытания должно быть выполнено не менее пяти определений, при расстоянии между отпечатками на бетоне не менее 30 мм, а на металлическом стержне — не менее 10 мм.

Метод определения прочности бетона молотком Физделя основан на использовании пластических деформаций строительных материалов. При ударе молотком по поверхности бетона локтевым ударом средней силы (локоть руки прижат к поверхности конструкции) по 10-12 ударов на каждом участке конструкции. Расстояние между отпечатками ударного молотка должно быть не менее 30 мм. Диаметр лунки измеряют линейкой с точностью до 0,1 мм. Прочность бетона определяют по графику на рис.4, в зависимости от диаметра отпечатка на поверхности бетона.

Рис.4. Зависимость прочности бетона на сжатие от диаметра лунки на поверхности материала (молоток Физделя)

Рис.4. Зависимость прочности бетона на сжатие от диаметра лунки на поверхности материала (молоток Физделя)

2.15. Прочность бетона конструкции может быть определена другими способами, например, с помощью пистолета ЦНИИСКа, основанного на измерении упругого отскока ударника при постоянной величине кинетической энергии металлической пружины или ультразвуковыми приборами, работа которых основана на наличии связи между прочностью бетона и скоростью распространения в бетоне ультразвукового импульса.

2.16. Снижение прочности бетона в зависимости от температуры нагрева конструкций во время пожара приведены в табл.5, если на момент обследования имеются данные о температурном режиме при пожаре.

Таблица 5

Снижение прочности бетона в зависимости от температуры нагрева и условий твердения

Вид бетона и условия твердения

Снижение прочности бетона после пожара, %,
при температуре на его поверхности, °С

Тяжелый с гранитным заполнителем, естественное

2.17. Оценка технического состояния стальных конструкций в зависимости от характера и величины дефектов приведена в табл.

Таблица 6

Оценка технического состояния стальных конструкций в зависимости от характера и величины дефектов

Вид дефекта

Местами разрушено антикоррозионное покрытие;

На отдельных участках наблюдается коррозия в виде отдельных пятен с поражением до 5% площади поперечного сечения элемента;

Прогиб балок и ферм не превышает 1/150 пролета.

Пластинчатая ржавчина с уменьшением площади сечения несущих элементов до 15% из-за коррозии металла;

Небольшая, но ощутимая вибрация балок и ферм;

Местные вмятины от ударов транспортных средств и другие механические повреждения, не приводящие к уменьшению несущей способности более, чем на 10%;

Прогиб изгибаемых элементов превышает 1/150 пролета

Коррозия металла с уменьшением расчетного сечения несущих элементов до 25%;

Трещины в сварных швах или в околошовной зоне;

Потеря местной устойчивости конструкции (выпучивание стенок или полок балок и колонн);

Срез отдельных болтов или заклепок в многоболтовых соединениях;

Отклонение ферм от вертикальной плоскости более 25 мм;

Прогибы изгибаемых элементов более 1/75 пролета.

Коррозия металла с уменьшением расчетного сечения несущих элементов более 25%;

Потеря общей устойчивости балок и сжатых элементов;

Наличие трещин в основном материале элементов;

Выход из строя отдельных элементов ферм;

Расстройство стыков со взаимным смещением опор;

Прогибы изгибаемых элементов более 1/50 пролета.

2.18. Характерные дефекты стальных конструкций, связанные с потерей местной и общей устойчивости элементов, а также повреждения стальных конструкций от коррозии материала и появления трещин показаны на рис.5.

Рис.5. Повреждения стальных конструкций

Рис.5. Повреждения стальных конструкций

а — общая потеря устойчивости балки;

б — то же, стойки;

в — потеря местной устойчивости балки;

г — коррозия металла (общая, местная, язвенная);

д — трещины в фасонке по металлу и сварному шву;

1 — трещины.


Различные виды дефектов сварных швов приведены на рис.6.

Рис.6. Дефекты сварных соединений

Рис.6. Дефекты сварных соединений

а — неравномерное сечение шва, кратеры; б — прожоги; в — резкий переход от метала шва к основному; г — неполномерность шва; д — наплывы; е — подрезы основного металла; ж — трещины; з — непровары; и — шлаковые включения

2.19. Сварные швы и околошовные зоны являются наиболее вероятными очагами возникновения трещин. Контроль сварных швов должен осуществляться с особой тщательностью визуальным осмотром с использованием лупы с 6-8 — кратным увеличением, причем поверхность металла в осматриваемых листах должна быть очищена от пыли продуктов коррозии и хорошо освещена.

Для измерения толщины угловых швов с помощью пластилина делают слепок, размеры катетов шва при этом определяется мерным угольником (рис.7).

Рис.7. Схема измерения сечения угловых швов с помощью снятия слепка

Рис.7. Схема измерения сечения угловых швов с помощью снятия слепка

1 — основной металл; 2 — наплавленный металл; 3 — пластилин; 4 — слепок сварного соединения; 5 — угловая линейка; 6 — размеры катетов шва

2.20. Для выявления величины раскрытия трещины, ее длины и конфигурации, зачищенную поверхность стальной конструкции смачивают керосином, что способствует четкому проявлению трещины.

2.21. Отклонение элементов стальных конструкций от вертикали измеряется с помощью отвеса и миллиметровой линейки. При измерениях отклонений элементов большой высоты (например, колонн) следует обеспечить неподвижное состояние отвеса путем опускания его в сосуд с жидкостью (рис.8).

Рис.8. Измерение отклонений от вертикали конструкций с помощью отвеса

Рис.8. Измерение отклонений от вертикали конструкций с помощью отвеса

1 — стена, перегородка или колонна; 2 — перекрытие; 3 — отвес; 4 — сосуд с водой; 5 — измерительная линейка; 6 — точка измерения

Отклонение элементов от вертикального положения может определяться с помощью нивелира и теодолита.

2.22. Выявление повреждений заклепочных соединений производится их внешним осмотром и остукиванием молотком весом около 0,3 кг. При ударе слабая заклепка издает глухой дребезжащий звук, а приложенный к ним палец ощущает вибрацию.

2.23. Контроль качества болтовых соединений осуществляется с помощью тарировочных ключей, обеспечивающих величину затяжки болтов, указанную в проекте.

При отсутствии проектных данных при контроле затяжки болтов величина крутящего момента не должна превышать значений, указанных в табл.7.

Таблица 7

Диаметр болта , мм

Допускаемый крутящий момент , Н.м

2.24. Для оценки состояния металлоконструкций в условиях нагрева (пожара) может быть использовано время, в течение которого они находились под воздействием высокой температуры. Это время следует сравнить с пределом огнестойкости конструкций, в течение которого они способны нормально функционировать в условиях воздействия высоких температур (около 500 °С).

2.25. Исходными материалами для оценки качества металла являются рабочие чертежи конструкций и сертификат на материал.

При отсутствии сертификатов и указаний о марке стали следует провести дополнительные исследования механических свойств стали (предела текучести, временного сопротивления, относительного удлинения и ударной вязкости) в соответствии с действующими нормативными документами.

2.26. По установленной категории технического состояния конструкций по табл.8 определяются требуемые мероприятия по усилению и ремонту конструкции, а также устанавливается коэффициент условий работы «», учитывающий снижение прочностных характеристик для расчета конструкций при усилении.

Таблица 8

Мероприятия по ремонту и усилению конструкций в зависимости от их повреждений

Характер повреждения

Требуемые мероприятия

Коэффициент условия работы

1. Нормальное состояние

Отсутствуют видимые повреждения, свидетельствующие о снижении несущей способности конструкций

Необходимости в ремонтных работах нет

2. Удовлетворительное состояние

Незначительное снижение несущей способности конструкции (до 5%)

Требуется восстановление защитного слоя бетона для железобетонных конструкций или антикоррозионного покрытия для стальных

3. Неудовлетворительное состояние

Существующие повреждения свидетельствуют о снижении несущей способности конструкций

Требуется усиление конструкций

4. Предаварийное состояние

Существующие повреждения свидетельствуют о непригодности конструкции и эксплуатации

Требуется капитальный ремонт с усилением конструкций. До проведения усиления необходимо ограничение нагрузок

5. Аварийное состояние

Требуется немедленная разгрузка конструкций и устройство временных креплений

Конструкция подлежит замене или требует капитальных ремонтно-восстановительных работ

3. ОСНОВНЫЕ СПОСОБЫ УСИЛЕНИЯ КОНСТРУКЦИЙ

3.1. Усиление железобетонных балок, ригелей и плит может производиться следующими способами:

— методом наращивания сечения (рис.9);

Рис.9. Способы усиления железобетонных изгибаемых элементов (балки, ригели, плиты) методом наращивания сечения

Рис.9. Способы усиления железобетонных изгибаемых элементов (балки, ригели, плиты) методом наращивания сечения

1) Прямоугольное сечение с усилением в растянутой зоне;

2) То же, с усилением в сжатой зоне;

3) Тавровое сечение с нейтральной осью в полке. Усиление в растянутой зоне;

4) То же. Усиление в сжатой зоне;

5) Тавровое сечение с нейтральной осью в ребре. Усиление в растянутой зоне;

6) То же. Усиление в сжатой зоне.


— с помощью металлических шпренгельных элементов (рис.10);

Рис.10. Усиление железобетонной балки стальным шпренгелем

1 — усиливаемый элемент;

2 — стальные уголки;

3 — металлические планки (пластинки)


— с применением стальных подкосов (рис.11).

Рис.11. Усиление железобетонных балок стальными подкосами

1 — усиливаемый элемент;

2 — стальные подкосы;

3 — стальные уголки;

4 — распорная планка

3.2. Усиление железобетонных колонн, опор и стоек производится следующим способом:

— методом наращивания сечения (рис.12);

Рис.12. Способы усиления внецентренно сжатых железобетонных элементов (колонн, опор, стоек) методом наращивания сечения

1) Одностороннее усиление сечения;

2) Двухстороннее усиление сечения;

3) Усиление сечения по периметру;

4) Усиление таврового сечения


— с помощью устройства обоймы из металлических уголков (рис.13);

Рис.13. Усиление железобетонной колонны стальной обоймой из уголков

1 — усиливаемый элемент;

2 — стальная обойма из уголков;

3 — упоры из стальных уголков;

4 — соединительные планки


— с помощью устройства обоймы из металлических труб (рис.14).

Рис.14. Усиление железобетонной колонны стальной обоймой

1 — усиливаемый элемент;

2 — стальной лист полукруглой формы (или разрезанная вдоль труба);

3 — накладная полоса;

4 — сварка;

5 — бетон замоноличивания

3.3. Метод наращивания сечения предусматривает увеличение сечения железобетонных элементов с установкой дополнительной арматуры, с обеспечением ее анкеровки и сцепления старого и вновь уложенного бетона.

Конструктивные указания по обеспечению сцепления бетона и анкеровке арматуры приведены в разделе 4.

3.4. Применение металлических шпренгельных элементов при усилении конструкций позволяет часть усилий, действующих на балку, передать на шпренгельную конструкцию и повысить несущую способность балки.

3.5. Усиление балочных конструкций с помощью стальных подкосов уменьшает расчетный пролет балки и существенно повышает ее несущую способность. Угол наклона подкосов определяется технологическими условиями эксплуатируемого здания и величиной усилий, действующих на балку.

3.6. Усиление железобетонных колонн стальной обоймой из уголков позволяет часть усилий, приходящихся на колонну, передать на металлические стойки. При этой необходимо обеспечить передачу усилий от балок на стальную обойму за счет плотного примыкания упорных уголков к балкам.

3.7. Применение стальных листов полукруглой формы или разрезанных вдоль стальных труб при усилении железобетонных колонн позволяет значительно повысить расчетное сопротивление бетона на сжатие, как материала находящегося в замкнутом пространстве (обойме). Полость между существующей колонной и обоймой заполняется цементно-песчаной смесью.

3.8. Усиление стальных конструкций может производиться следующими способами:

— увеличением сечений элементов;

— устройством дополнительных связей ребер, диафрагм и распорок для увеличения местной и общей устойчивости конструкций;

— установкой дополнительных элементов с целью изменения конструктивной схемы;

— обетонированием стальных конструкций.

3.9. Способ увеличения сечения несущих элементов используется при усилении ветвей решетчатых колонн, сплошных балок, прогонов, стоек разных конфигураций и элементов других сплошных и пространственных конструкций.

Примеры усиления конструкций способом увеличения сечения приведены на рис.15.

Рис.15. Усиление конструкций способом увеличения сечения

1 — существующая конструкция;

2 — дополнительный элемент сечения;

3 — сварка


Присоединение дополнительных элементов к основной конструкции при помощи сварки требует частичной разгрузки усиливаемой конструкции, т.к. нагрев элементов в процессе сварки может снизить несущую способность усиливаемых элементов до 20%.

3.10. Устройство дополнительных связей, ребер, диафрагм, распорок и др. служит для повышения жесткости отдельных элементов конструкций. Например, постановка дополнительных поперечных и продольных ребер жесткости производится в случае недостаточной местной устойчивости стенок балок, местную жесткость составных полок увеличивают постановкой дополнительных диафрагм. Принципы конструирования ребер жесткости и диафрагм усиления такие же, как и в новых конструкциях.

3.11. Установка дополнительных элементов с целью изменения конструктивной формы сооружения и увеличения общей пространственной жесткости осуществляется путем введения, например, шпренгельных элементов в балочные конструкции, установкой подкосов, уменьшающих пролет элементов и другими аналогичными мероприятиями.

3.12. Обетонирование стальных конструкций, главным образом стоек, колонн, позволяет значительно повысить жесткость и несущую способность усиливаемой конструкции, а кроме того, увеличить огнестойкость и коррозионную стойкость материала.

3.13. Расчет усиления стальных конструкций производится как для новых конструкций в соответствии с действующими нормативными документами. При этом несущая способность нового сечения (в том числе и сварных швов) определяется с учетом коэффициента условия работы «», учитывающего техническое состояние конструкции (табл.8).

3.14. Усиление несущих элементов ферм (раскосов, поясов, стоек), имеющих значительные повреждения и находящихся в неудовлетворительном, предаварийном или аварийном состоянии, — не допускается. Эти конструкции должны быть демонтированы и взамен них установлены новые. Локальные дефекты элементов ферм могут быть усилены в зависимости от имеющихся повреждений в каждом конкретном случае.

3.15. Методика расчета усиления железобетонных конструкций приведена в разделе 5, а примеры расчета — в разделе 6.

4. КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ ПО ОСУЩЕСТВЛЕНИЮ СВЯЗИ СТАРОГО БЕТОНА С ВНОВЬ УЛОЖЕННЫМ

4.1. При проведении ремонтно-восстановительных работ, связанных с усилением железобетонных конструкций методом наращивания сечения, возникает проблема надежного сцепления старого с вновь уложенным, определение состава бетона замоноличивания, анкеровки дополнительно уложенной арматуры и другие факторы.

4.2. При назначении высоты наращиваемой части бетона следует исходить из условия размещения в этом слое дополнительной арматуры, обеспечивающей повышение несущей способности железобетонного элемента, соответствующего защитного слоя, а также способов соединения этой арматуры с арматурой существующей конструкции. При этом минимальная высота наращиваемого бетона должна обеспечивать качественное производство работ (необходимая плотность и надежное сцепление с бетоном существующей конструкции).

После проведения расчетов по предлагаемой методике, в случаях, когда полученные результаты не удовлетворяют требуемым условиям (обеспечение совместной работы нового и старого бетона, сохранение несущей способности конструкции), следует изменить толщину наращиваемой части бетона или увеличить диаметр дополнительной арматуры.

Усиление конструкций путем наращивания сжатой зоны конструкции позволяет осуществить более тщательное производство работ, однако применение этого способа усиления в некоторых случаях требует дополнительных мероприятий, обеспечивающих фронт для проведения ремонтно-восстановительных работ.

4.3. При ремонте защитного слоя бетона предусматриваются следующие виды работ:

— заделка отдельных выколов и раковин;

— замена или восстановление защитного слоя (частичная или сплошная).

Толщина защитного слоя должна быть не менее 2,5 см для рабочей арматуры и не менее 1,5 см для хомутов и конструктивной арматуры. При замене защитного слоя бетона арматура должна быть очищена от ржавчины.

Восстановление защитного слоя бетона должно производиться цементно-песчаным раствором или торкрет бетоном. Уложенный раствор примерно через час смачивается водой, присыпается сухим цементом, заглаживается с помощью кельм, деревянной или металлической гладилкой.

При подготовке поверхности к ремонту одиночные трещины с шириной раскрытия свыше 1 мм разделываются в виде прямоугольника и зачеканиваются цементно-песчаным раствором.

В местах больших околов бетона и обнажения арматуры устанавливают дополнительную арматурную сетку с размерами ячеек от 2,5 до 10 см и диаметром проволоки от 0,5 до 6 мм с прикреплением вновь устанавливаемых сеток к основной арматуре конструкций.

При восстановлении защитного слоя, для увеличения сил сцепления между новым и старым бетоном рекомендуется применять прослойку из эпоксидного клея.

4.4. В зависимости от степени развития трещин могут применяться следующие способы ремонта конструкций:

— при раскрытии трещин до 0,3 мм — устройство защитных пленок и покрытий из лако-красочных материалов;

— при раскрытии трещин более 0,3 мм — герметизация трещин водонепроницаемым эластичным материалом.

Герметизация трещин эластичными материалами производится с помощью шприцов.

4.5. Увеличение несущей способности методом наращивания могут производиться следующими способами:

— с установкой дополнительных арматурных стержней, которые непосредственно привариваются к основной арматуре (рис.16а) шпоночными швами через 50-100 см или с помощью прокладок в виде коротышей из круглой стали длиной 10-20 см;

— путем приварки к существующей продольной арматуре наклонных стержней или пластинок (рис.16б). Диаметр отогнутых стержней рекомендуется принимать диаметром от 12 до 20 мм. Размеры швов назначают из условия равнопрочности швов и привариваемых стержней арматуры. Минимальные размеры (длину) сварных швов принимают равными: при двухстороннем шве — четырем диаметрам привариваемых стержней, при одностороннем — шести диаметрам;

Рис.16. Установка дополнительной арматуры в растянутой зоне

а) крепление дополнительной арматуры с помощью коротышей;

б) то же, с помощью наклонных хомутов;

1 — усиливаемая конструкция;

2 — арматура усиливаемой конструкции;

3 — дополнительная рабочая арматура;

4 — коротыши;

5 — наклонные стержни (коротыши);

6 — поперечные стержни


— увеличением рабочей высоты сечения элемента путем наращивания бетона сжатой зоны.

4.6. Способ усиления с установкой дополнительной арматуры, приваренной непосредственно к основной (в том числе и через коротыши) позволяет увеличить, главным образом, количество растянутой арматуры и в меньшей мере высоту сечения (на 2-8 см).

4.7. При усилении сечения путем установки дополнительной арматуры, которая приваривается с помощью отогнутых стержней, достигается существенное увеличение несущей способности сечения как за счет увеличения количества растянутой арматуры, так и за счет увеличения рабочей высоты сечения. Однако данный способ более трудоемок при производстве работ за счет необходимости установки опалубки, укладки и уплотнения бетона.

4.8. При наращивании сечения со стороны сжатой зоны необходимо обеспечить совместную работу старого и вновь уложенного бетона. Для этого производят обработку поверхности бетона с целью придания ему необходимой шероховатости в виде насечки с помощью перфоратора или зубила. Перед бетонированием поверхность бетона очищают от пыли и тщательно промывают водой.

Набетонка армируется металлической сеткой из стержней диаметром 4-8 мм.

5. МЕТОДИКА РАСЧЕТА УСИЛЕНИЯ КОНСТРУКЦИЙ

А. Железобетонные конструкции

5.1. Расчет железобетонных конструкций, получивших повреждения и подлежащих усилению, производится в соответствии с указаниями главы СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» * на нагрузки, фактически действующие на момент обследования, с учетом возможного их увеличения.
________________
* На территории Российской Федерации документ не действует. Действует СНиП 52-01-03 , здесь и далее по тексту. — Примечание изготовителя базы данных.

5.2. При расчете сечений усиливаемых элементов на прочность вводится коэффициент условий работы (см. табл.8), учитывающий изменение микроструктуры материала от физического износа конструкций, коррозию бетона и арматуры, характер повреждения и другие факторы.

5.3. При выборе конструктивного решения усиления конструкций необходимо обеспечить прочность, устойчивость и пространственную неизменяемость конструкций, а также технико-экономическую целесообразность принятого решения в конкретных условиях строительства.

Идет завершение процесса оплаты.

Полный текст документа будет доступен вам, как только оплата будет подтверждена.
После подтверждения оплаты, страница будет автоматически обновлена , обычно это занимает не более нескольких минут.

Приносим извинения за вынужденное неудобство.

Если денежные средства были списаны, но текст оплаченного документа предоставлен не был, обратитесь к нам за помощью: [email protected]

Если процедура оплаты на сайте платежной системы не была завершена, денежные
средства с вашего счета списаны НЕ будут и подтверждения оплаты мы не получим.
В этом случае вы можете повторить покупку документа с помощью кнопки справа.

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Усиление железобетонных колонн

Наибольшее распространение получили следующие методы усиления ствола колонн: железобетонные обоймы; одностороннее и двухстороннее наращивание сечения; металлические обоймы ненапряженные и с предварительным напряжением хомутов; предварительно напряженные металлические распорки.

Усиление железобетонной обоймой (рис.3.8, а) считается наиболее простым и надежным способом увеличения несущей способности колонны.

Обойма состоит из продольной арматуры, замкнутых хомутов, бетонного слоя, охватывающего сечение колонны.

Перед усилением поверхность колонны подготавливается следующим образом: удаляется штукатурный слой; зубилом делается насечка в бетоне на глубине 3-6 мм; промывается за час до бетонирования поверхность старого бетона чистой водой.

Железобетонная обойма обычно имеет толщину 6-12 см. Сечение и количество продольной арматуры определяется расчетом при условии обеспечения совместной работы обоймы с колонной. Поперечная арматура принимается диаметром не менее 6 мм и устанавливается с шагом S, удовлетворяющим требованиям:

15d≥S≥3δ; S≤200 мм,

где d — диаметр продольной арматуры;

δ — толщина обоймы.

Усиление колонн односторонним наращиванием сечения (рис.3.8, б) обычно применяется во внецентренно сжатых колоннах для уменьшения начального эксцентриситета приложения внешней нагрузки и увеличения прочности колонн. Важным условием надежности усиления является обеспечение совместной работы нового бетона со старым. Для этого предусматриваются те же мероприятия, что и при усилении железобетонными обоймами, и, кроме того, новая продольная арматура соединяется на сварке со старой с помощью стальных коротышей Ø10-30 мм, устанавливаемых с шагом 500-800 мм. В связи с большой трудоемкостью усиления одностороннее наращивание применяется редко.

Усиление колонн стальной обоймой (рис.3.8, в), довольно простое в исполнении, незначительно увеличивает размер поперечного сечения и позволяет использовать колонну в эксплуатационном режиме сразу же после ее усиления Продольные элементы обоймы из уголковой стали устанавливаются на цементно-песчаном растворе и прижимаются к колонне с помощью струбцин, после чего к уголкам привариваются поперечные планки, устанавливаемые по длине колонны с шагом 400-600 мм.

В предварительно напряженных обоймах поперечные планки нагреваются до температуры 100-120°С, а затем уже привариваются к продольным элементам. При остывании планки укорачиваются и создают эффект преднапряжения.

Усиление колонн стальными распорками (рис.3.8, г) является достаточно эффективным средством увеличения их несущей способности, которая повышается пропорционально площади поперечного сечения распорок.

Распорки состоят из двух уголков (швеллеров), связанных между собой соединительными планками.

Вверху и внизу каждой распорки крепятся опорные уголки, через которые усилие распора передается на консоли. Как видно из рис.3.8, г, распорки с перегибом устанавливаются в середине их высоты. Для создания предварительного напряжения сжатия распорки с помощью натяжных болтов выпрямляются, принимая вертикальное положение. При этом распорки надежно включаются в совместную работу с колонной, частично разгружая ее. Величина сжимающих напряжений в распорках в период их включения в работу по данным достигает 60-80 МПа.

Усиление колонн предварительно напряженными распорками целесообразно при длине распорок не более 5 м, когда не требуется большого расхода металла для обеспечения их устойчивости. Пример расчета распорок представлен в .

Рис.3.8. Способы усиления колонн:

а — железобетонная обойма; б — одностороннее наращивание; в — металлическая обойма; г — металлические распорки

Выбор метода усиления консоли колонны , как правило, зависит от ее формы и характера действующих усилий. Так, при больших изгибающих моментах эффективной оказывается горизонтальная затяжка (табл.3.7, п.1) из тяжей, натягиваемых гайками до напряжений 60-90 МПа. При больших значениях поперечной силы и сжимающих напряжений в наклонной сжатой полосе целесообразно усиление преднапряженной наклонной затяжкой (табл.3.7, п.2) или металлическим столиком (табл.3.7, п.3), приваренным к продольной арматуре колонны.

Площадь сечения ветвей горизонтальной затяжки определяется по формуле

A s 13 =1,25(М 1 -М)/R sn h 01 ·0,9,

где М 1 , М — соответственно изгибающие моменты, воспринимаемые консолью после и до усиления;

h 01 — полезная высота сечения консоли, усиленной затяжкой.

Таблица 3.7

Усиление консолей колонн

Добавить комментарий